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Abstract 

The purpose of this investigation was to compare the efficacy of three methods 

for detecting differential item functioning (DIF).  The performance of the crossing 

simultaneous item bias test (CSIBTEST), the item response theory likelihood ratio test 

(IRT-LR), and logistic regression (LOGREG) was examined across a range of 

experimental conditions including different test lengths, sample sizes, DIF and 

differential test functioning (DTF) magnitudes, and mean differences in the underlying 

trait distributions of comparison groups, herein referred to as the reference and focal 

groups.  In addition, each procedure was implemented using both an all-other anchor 

approach, in which the IRT-LR baseline model, CSIBEST matching subtest, and 

LOGREG trait estimate were based on all test items except for the one under study, and a 

constant anchor approach, in which the baseline model, matching subtest, and trait 

estimate were based on a predefined subset of DIF-free items.  Response data for the 

reference and focal groups were generated using known item parameters based on the 

three-parameter logistic item response theory model (3-PLM).  Various types of DIF 

were simulated by shifting the generating item parameters of select items to achieve 

desired DIF and DTF magnitudes based on the area between the groups’ item response 

functions.  Power, Type I error, and Type III error rates were computed for each 

experimental condition based on 100 replications and effects analyzed via ANOVA.  

Results indicated that the procedures varied in efficacy, with LOGREG when 

implemented using an all-other approach providing the best balance of power and Type I 
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error rate.  However, none of the procedures were effective at identifying the type of DIF 

that was simulated. 
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CHAPTER 1 

Introduction 

Assessment is prevalent in organizational settings because studies have shown 

that the use of valid tests for selection and promotion greatly enhances decision making 

and therefore productivity (Schmidt & Hunter, 1998).  Unfortunately, evidence of mean 

test score differences across demographic groups, particularly between a majority group 

and a minority group identified as “protected” under the Civil Rights Act of 1964 

(Sackett, Schmitt, Ellingson, & Kabin, 2001), raises concerns that tests are biased and 

thus increase the likelihood of litigation, which can reduce the anticipated utility of 

assessment-based selection programs.  In recognition of these concerns, the American 

Psychological Association (APA) and similar organizations have, over the years, 

commissioned scientific task forces or review panels, consisting of psychologists, 

educators, and measurement specialists.  The objective was to examine the issue of test 

bias, develop precise statistical and psychometric definitions that distinguish bias from 

group mean differences in scores that relate to actual differences in performance, and 

identify powerful and up-to-date methods for detecting and revising problematic items or 

instruments.  The results of these efforts have been codified in documents, such as the 

Standards for Educational and Psychological Testing (American Educational Research 

Association [AERA], APA, & National Council on Measurement in Education [NCME], 

1999) and the Society for Industrial and Organizational Psychologists (SIOP) Principles 

for the Validation and Use of Personnel Selection Procedures (2003), which provide 
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recommendations, or “best practices”, intended to guide organizational professionals who 

are involved directly with test development, validation, and use. 

These documents and, more generally, the psychometric literature discuss two 

broad forms of test bias: external and internal (Drasgow, 1984).  External or predictive 

bias refers to differences across comparison groups in a test’s relationships with external 

criteria.  Since the 1960s, the recommended way of testing for predictive bias is to 

compare regression lines for test score-criterion relationships across groups, with and 

without the inclusion of group membership and, possibly, interaction terms as additional 

predictors.  Internal bias, on the other hand, is more precisely referred to as differential 

functioning.  Differential item functioning (DIF) is said to occur when individuals from 

different groups have unequal expected item scores, after conditioning, or matching, on 

the primary trait, attribute, or ability the test is designed to measure.  Similarly, 

differential test functioning (DTF) is said to occur when individuals from different groups 

have unequal expected test (i.e., number correct or total) scores, after conditioning on 

trait level.  Importantly, both item response theory (IRT) and confirmatory factor analysis 

(CFA) methods for detecting differential functioning, which are advocated by the testing 

standards, are capable of distinguishing DIF and DTF, internal problems with a 

measuring instrument, from impact, defined as a true difference in the distribution of the 

latent trait or attribute measured by a test across comparison groups. 

To assess whether an instrument shows bias in a general sense, it is therefore 

necessary to conduct tests for both internal and external bias using appropriate statistical 

and psychometric methods.  The presence or absence of mean differences across groups 

in item or test scores does not provide any meaningful information concerning internal 
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bias, because DIF/DTF and impact can work in opposite directions.  An unbiased 

instrument can show substantial impact if the comparison groups differ markedly in terms 

of their actual skills.  Alternately, an instrument that exhibits no impact can contain a 

large number of DIF items, resulting in significant DTF or none at all.  The latter is 

possible when items vary in the direction of DIF so that cancellation occurs when 

forming total scores.  Finally, a lack of internal bias does not guarantee that a test will 

have equivalent relationships with external criteria, or vice versa. A test could have 

internal bias while showing similar regressions and correlations with external measures. 

The Present Study 

This study focuses exclusively on the effectiveness of IRT-based DIF detection 

methods.  However, because IRT methods may be new to some readers, this presentation 

begins with a brief summary of the recommended approach for examining predictive bias 

involving moderated linear regression.  Graphical illustrations of relational equivalence 

and various forms of predictive bias are then used as springboards for introducing IRT 

functions that relate expected item scores to trait scores via nonlinear regression lines.  

Following that are more detailed definitions of DIF, visual illustrations of its various 

manifestations, and a review of parametric and nonparametric DIF detection methods, 

including those that are the focus of this investigation.  This presentation continues with a 

summary of the Monte Carlo simulation, methods of data analysis, and hypotheses 

concerning the results, and concludes with a discussion of the implications of the study 

findings upon practice and future research. 
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CHAPTER 2 

Predictive Bias 

Predictive bias, also known as differential prediction, refers to a difference across 

examinee subgroups in the relationship between test scores and an external criterion 

measure, such as job performance (Cleary, 1968; Drasgow, 1984; Humphreys, 1952).  

Figure 1 presents some hypothetical scenarios.  Panel (a) presents a test that shows no 

predictive bias; that is, the same regression line can be used to describe the predictor-

performance relationship for the comparison groups, generally referred to as the 

reference and focal groups (Holland & Thayer, 1988).  The other panels of Figure 1 

present scenarios in which a test shows bias due to differences in intercepts (b), slopes 

(c), or both intercepts and slopes (d and e).  First, note that in the presence of slope 

differences (c), one group may be uniformly favored across the entire test score range, 

because an ordinal interaction occurs; specifically, the regression lines converge 

somewhat, but do not cross.  On the other hand, a disordinal interaction (d) can occur, 

wherein the reference group is favored at some trait levels and the focal group at others.  

The scenario involving intercept differences that typically raises concern among testing 

critics is one in which the focal group has a higher intercept than the reference group, but 

the reference group regression line is used for selection decisions, thus leading to 

underprediction of focal group member performance.  Such is the case shown in panels 

(b) and (e). 
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Figure 1. Examples of predictive bias. 

 

According to the Standards for Educational and Psychological Testing (AERA, 

APA, & NCME, 1999) and the Principles for the Validation and Use of Personnel 

Selection Procedures (SIOP, 2003), hypotheses about predictive bias can be tested using 

a moderated linear regression approach that examines either changes in the multiple 

correlation coefficient or the statistical significance of regression weights for nested 

models involving terms for test scores, group membership, and their interaction.  

Specifically, a compact (reduced) model is formed first, in which a dependent variable (y) 

is chosen, such as job performance, and the test score (x) is used as a predictor.  Next, an 

augmented (full) model is created by adding two terms: one for group membership (d) 

and another for the interaction of group membership with test scores (dx).  The 

differential prediction analysis is conducted by entering the predictors for the compact 

and augmented models in separate blocks.  A significant change from Block 1 to Block 2 

in the multiple correlation indicates that differential prediction is present.  More 

precisely, a significant regression coefficient for the interaction term indicates inequality 
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of slopes, whereas a significant coefficient for the group membership term indicates 

inequality of intercepts (Stark, Chernyshenko, & Drasgow, 2004). 

Research in applied settings has not shown much support for hypotheses 

involving differential prediction.  In the few studies where differences have been found, 

the most common source of nonequivalence has been intercept differences that have been 

attributed to measurement or sampling error, and, contrary to intuition, these differences 

would have resulted in slight overprediction of focal group performance if a common 

regression line had been used (Jensen, 1980; Linn, 1982).  Therefore, the more pressing 

concern seems to be group mean differences that affect selection rates directly, via 

proportions of correct (true positive and true negative) and incorrect (false positive and 

false negative) selection decisions within comparison groups.  An unfortunate fact is that 

higher scoring groups not only show more true positives, but also benefit more from false 

positive decisions, and, conversely, lower scoring groups are disproportionately impacted 

by false negatives.  (Recognition of this issue prompted discussion in the late 1970s of 

procedures to adjust test scores based on group membership; interested readers should see 

Hartigan and Widgor [1989] and Sackett and Wilk [1994] for details.)  It is therefore 

important that testing professionals not only evaluate their instruments for predictive bias 

but that they also use complimentary methods to detect internal bias (Drasgow, 1984), 

which could exacerbate mean differences due to impact, and thus, the undesirable 

secondary effects of testing on society. 

In summary, external bias does not seem to be a pervasive phenomenon that 

adversely affects selection rates for protected group members. Yet, evidence of 

equivalent relationships between test scores and criterion measures across groups does 
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not eliminate the possibility that a test exhibits internal bias (Drasgow, 1984).  The 

internal psychometric properties of instruments must be specifically examined using 

methods rooted in IRT or CFA to determine if the items measure equally well for 

comparison groups.  The next chapter focuses on the issue of internal, or measurement, 

bias, its manifestations, and its effects on item responses. 
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CHAPTER 3 

Measurement Bias (a.k.a., Differential Functioning) 

Unlike predictive bias, which addresses differences in the relationship between an 

assessment and an external criterion, measurement bias concerns how a test’s internal 

psychometric properties vary across comparison groups.  For example, are the items 

equally difficult and do they discriminate equally well for members of reference and 

focal groups after controlling for differences in ability (a.k.a. trait level)?  If so, then 

measurement equivalence is said to obtain (Drasgow, 1984); otherwise, measurement 

bias, properly referred to as differential functioning, may be present. 

A key issue in identifying differential functioning lies in its distinction from 

impact.  As mentioned previously, impact refers to a “true” difference across comparison 

groups in the distribution of the trait a test is designed to measure; that is, the groups 

differ in a substantive or meaningful way in terms of the skill that is assessed, rather than 

due to artifacts or spurious factors associated with problems in the measuring instrument.  

Impact is accounted for in an IRT framework through mathematical transformations, or 

processes broadly referred to as linking methods, that put quantities estimated in different 

groups on a common scale for comparison purposes.  On the other hand, differential 

functioning occurs when comparison groups differ in their expected item or test scores 

after accounting for impact.  In particular, differential item functioning (DIF) is said to 

occur when comparison groups differ in their probability of correctly answering an item 

after conditioning on, or controlling for, trait level (Hambleton & Swaminathan, 1985; 
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Hulin, Drasgow, & Parsons, 1983; Lord, 1980; Shealy & Stout, 1993).  And, differential 

test functioning (DTF) is said to occur when DIF at the item level accumulates to produce 

differences in expected test scores. 

Because IRT methods do not confound differential functioning with impact, mean 

differences in observed test scores across comparison groups can be broken down into 

components, as shown, Mean Difference = DTF + IMPACT, and the relative effects of 

these two sources of variation on test scores and selection rates can be examined to 

determine if test revision is warranted (Stark et al., 2004).  (Note that DTF can be further 

decomposed into individual DIF results.)  For example, consider the two hypothetical 

observed score distributions shown in Figure 2.  For convenience, these distributions 

were chosen to be normal and equal in variance, but, in practice, this need not be the 

case. 

In the figure, it can be seen that Group 2 has a substantially higher mean than 

Group 1, which would result in disproportionately more members from Group 2 being 

hired, licensed, or admitted into an organization, regardless of the cut score used for 

decision making. If this mean difference in test scores occurred using an unbiased test 

(i.e., it is attributable solely to impact), then modifying or replacing items would not be 

necessary from a psychometric standpoint and would not necessarily cure the disparity in 

selection rates.  On the other hand, if the groups had identical trait distributions, yet the 

test scores differed as shown due to internal problems with the instrument, then test 

revision would be required and the disparity in selection rates would be mitigated.  

Finally, if the difference occurred because of both DTF and impact, then one would need 
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to judge whether modifying the test would have any practical effect on decision making 

and act on the basis of ethical and legal grounds. 

 

 

Figure 2. Hypothetical distributions of observed test scores for two comparison groups. 

 

Item Response Functions 

In the IRT framework, it is customary to illustrate the relationship between the 

probability of a correct response and examinee trait level graphically, using what is 

referred to as an item response function (IRF).  Basically, an IRF represents the nonlinear 

regression of an item’s expected score on examinee trait level (Hambleton & 

Swaminathan, 1985) with the horizontal axis representing examinee trait level, θ, and the 

vertical axis the probability of a correct or positive response.  IRFs are useful for visually 

examining the quality of test items because the steepness of a curve indicates how well an 

item differentiates among examinees of different trait levels and its lateral position along 

the trait axis indicates its difficulty.  Example IRFs for items differing in discrimination 

and difficulty are presented in Figure 3. 
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Figure 3. Example item response functions (IRFs). 

 

Figure 3a presents an IRF having a shallow or relatively flat slope, which 

indicates that the probability of a positive response does not change rapidly as a function 

of trait level.  This item exhibits low discrimination and is less informative for 

examinees, on average, than an item having a steep IRF, such as the one shown in Figure 

3b.  The item represented in Figure 3b exhibits good discrimination for most examinees, 

because the probability of answering it correctly varies markedly in the middle regions of 

the trait continuum, even over relatively narrow ranges of θ.  It does not, however, 

discriminate well for examinees having trait levels beyond -/+1.5, where the IRF is 

relatively flat.  Note also that the items represented in panels (a) and (b) are equally 

difficult, with both showing response probabilities to .5 at θ = 0. 
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Panels (c) and (d) of Figure 3 present IRFs for items that are equally 

discriminating, but different in difficulty.  The difficulty of an item is indicated by its 

lateral position along the horizontal axis.  The item presented in panel (c) is relatively 

easy, because the probability of a correct response is high even at a low trait levels (e.g., 

θ = -1), whereas the item presented in panel (d) is relatively difficult because even 

examinees having high trait level (e.g., θ = +1) have only a .5 probability of answering it 

correctly. 

If one works with parametric models that formally specify the relationship 

between trait level and item response probabilities using a mathematical model, then to 

compute an IRF, one must first estimate item parameters from the response data, using a 

procedure, such as marginal maximum likelihood estimation (MML; Bock & Lieberman, 

1970).  These item parameter estimates can then be substituted into the equation for the 

model to compute response probabilities at various trait levels for plotting.  With 

nonparametric methods, on the other hand, there are usually no formal models for item 

responding.  Instead, only general assumptions are made about the shapes of IRFs (e.g., 

monotonicity) and the IRFs are estimated directly from the observed response data.  The 

purported advantages of nonparametric methods are that sample size requirements are 

smaller than with  most parametric methods and less restrictive assumptions about the 

shape of IRFs may make them applicable to a wider variety of item types (Stark, 

Chernyshenko, Chan, Lee, & Drasgow, 2001).  The lack of parameters, however, may 

reduce interpretability when psychometric problems are suspected and item revision is 

warranted. 
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In the context of DIF analysis, where one wishes to determine if an item is biased, an IRF 

must be estimated for each comparison group.  The differences between the curves for 

each item must then be tested for statistical significance by comparing the groups’ item 

parameters, response probabilities, or the area between their IRFs.  If the results of these 

tests are nonsignificant, measurement equivalence is said to hold; otherwise, DIF is 

present.  Graphical examples of items showing measurement equivalence and various 

types of DIF across reference and focal groups are shown in Figure 4. 
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Figure 4.  Example of a non-DIF item (a) and items exhibiting various types of DIF against the focal group (panels b through f).  

(Note: DIF = differential item functioning.). 
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Figure 4a presents the case for an item showing measurement equivalence (i.e., a 

non-DIF item).  After accounting for impact, the reference and focal group IRFs are 

virtually identical, thus yielding curves that overlap.  This is the ideal scenario for every 

test item because examinees having the same trait level have equal probabilities of 

responding correctly, regardless of the group to which they belong.  In practice, however, 

small differences in the IRFs across groups are likely to occur, not only because of 

estimation error, but possibly due to violations of model assumptions, such as 

multidimensionality, which by some accounts is the underlying source of DIF.  Shealy 

and Stout (1993) and Camilli (1992), for example, postulate that DIF occurs when 

comparison groups differ along a secondary dimension that influences item responding 

on the primary attribute measured by a test (interested readers should refer to those 

papers for details).  Panels (b) through (e) of Figure 4 present examples of items showing 

DIF in reference and focal group comparisons. 

 Figure 4b shows the case for an item that is equally discriminating across 

comparison groups but exhibits a difference in difficulty.  Note that the slopes of the IRFs 

are identical, but the focal group IRF is shifted toward higher trait levels even after 

accounting for impact.  This item is therefore said to exhibit unidirectional DIF (Li & 

Stout, 1996) against the focal group, because the focal group response probabilities are 

lower across the trait continuum, except at extremes where the IRFs converge.  Because 

this unidirectional DIF results only from differences in difficulty, the term uniform DIF is 

also used to describe this situation (Mellenbergh, 1982).  This type of DIF is analogous to 

the predictive bias scenario in Figure 1b where the focal group regression line is higher 

than that of the reference group because of an intercept difference. 
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 Figure 4c presents another type of unidirectional DIF, which results from 

differences in both difficulty and discrimination.  As can be seen, the focal and reference 

group IRFs are neither parallel nor crossing, resulting in a situation referred to as 

unidirectional mixed DIF (Li & Stout, 1996; Rogers & Swaminathan, 1993).  This 

scenario is analogous to Figure 1c where the regression lines differ in both intercept and 

slope, but do not intersect, thus indicating an ordinal interaction. 

Panels (d) through (f) of Figure 4 exhibit three types of nonuniform DIF 

(Mellenbergh, 1982), in which neither group is favored consistently across trait levels.  

Panel (d) presents a situation in which the reference group is favored at low trait levels 

and the focal group is favored at high trait levels, solely because of differences in item 

discrimination.  Note that the IRFs, in this case, cross to produce a disordinal interaction 

(Swaminathan & Rogers, 1990), like the one shown in Figure 1d. 

On the other hand, Figure 4e illustrates another type of nonuniform DIF item (i.e., 

group IRFs exhibit equal difficulty but unequal discrimination) in which the IRFs cross at 

such high trait levels that its manifestation is indistinguishable from unidirectional DIF 

(Figure 4b), thereby making identification of DIF type inherently problematic (Li & 

Stout, 1996).  Going forward, this special case is therefore referred to as functionally 

uniform DIF. 

Finally, Figure 4f demonstrates a type of nonuniform DIF referred to as crossing 

mixed DIF (Li & Stout, 1996; Rogers & Swaminathan, 1993).  In this scenario, the focal 

and reference group IRFs have unequal difficulty and discrimination to an extent that is 

sufficient to produce IRFs that cross, thus differentiating this case from the previously 
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described unidirectional mixed DIF.  This scenario is reflective of the predictive bias 

example shown in Figure 1e in which an ordinal interaction is present. 

The examples of DIF described above illustrate some of the most common 

manifestations of this phenomenon, but are by no means comprehensive.  For example, 

the direction of DIF could have been reversed in each case, producing a bias that, on 

average, favored the focal group over the reference group.  Although such findings might 

seem surprising and defy conventional wisdom, they are not uncommon with real test 

data (e.g., Drasgow, 1987; Stark et al., 2004). 
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CHAPTER 4 

DIF Detection Using IRT 

The Standards for Educational and Psychological Testing (AERA et al., 1999) 

state that all assessments should be screened for items that may exhibit DIF in order to 

ensure fairness in testing.  Simple statistical or classical test theory approaches, such as 

comparisons of proportion correct scores (p-values) or analysis of variance (ANOVA) 

tests for group by item interactions, are ineffective in this regard, because they confound 

differential functioning with impact (Drasgow, 1987).  At present, there are two broad 

classes of methods capable of DIF detection: those based on CFA and those based on IRT 

(Glöckner-Rist & Hoijtink, 2003; Meade & Lautenschlager, 2004, 2004b; Raju, Laffitte, 

& Byrne, 2002; Reise, Widaman, & Pugh, 1993; Stark, Chernyshenko, & Drasgow, 

2006).  CFA methods, such as mean and covariance structure analysis (MACS, Sörbom, 

1974), involve a linear model that is well suited for polytomous data and may be 

extended to tests designed intentionally to be multidimensional.  However, because most 

tests in educational and organizational settings are designed to measure one dominant 

dimension at a time, IRT methods involving nonlinear models that are suitable for both 

polytomous and dichotomous data are more often recommended for DIF detection (e.g., 

Drasgow & Hulin, 1990).  Furthermore, because IRT offers a wide array of item response 

models and DIF detection methods, it is possible to identify those that are most consistent 

with theoretical and practical considerations in each application and, if necessary, to 

conduct comparative examinations of appropriateness. 
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Parametric vs. Nonparametric DIF Detection 

In the context of IRT-based DIF detection, the term parametric refers to whether 

parameters characterizing items and persons are estimated explicitly during the course of 

data analysis.  Parametric methods require one to specify a formal model for item 

responding and to estimate its associated parameters as a way of comparing item 

properties across reference and focal groups.  Nonparametric methods, on the other hand, 

detect DIF by comparing item and test scores obtained directly from examinee responses, 

and thus circumvent some of the steps and difficulties that may be encountered during 

parameter estimation (Raju & Ellis, 2002).  When DIF is found, nonparametric methods 

arguably provide little insight into the potential causes of DIF whereas parameters that 

have substantive interpretations might provide some guidance as to how an item or test 

could be revised.  For this reason, parametric DIF detection methods are often preferred.  

Nonetheless, whether one chooses a parametric or nonparametric method, the distinction 

between differential functioning and impact remains clear (Drasgow & Hulin, 1990; 

Hulin et al., 1983; Stark et al., 2006).  The way impact is handled by parametric and 

nonparametric DIF detection procedures differs, however, as do the mechanics of their 

implementation. 

Parametric DIF Detection 

In general, parametric DIF detection methods involve the following sequence of 

steps.  First, a model for item responding is chosen based on theoretical and practical 

considerations.  Theoretical considerations could include the nature of the construct being 

assessed (cognitive or noncognitive), the response format (e.g., dichotomous or 

polytomous with ordered/unordered categories), and the possibility of response sets (e.g., 
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guessing or impression management), whereas practical considerations could include the 

available sample size (models having more parameters require larger samples) and test 

length (longer tests yield better parameter estimates).  Once an IRT model is chosen, its 

item parameters (e.g., discrimination and difficulty) must be estimated for both the 

reference and focal groups (see Hambleton & Swaminathan, 1985).  To account for 

impact, parameters can be estimated simultaneously, using a procedure known as 

concurrent calibration, or estimated separately for each group and then placed on a 

common scale by a linear transformation through a process known as linking.  In either 

case, model-data fit is examined and, if reasonably good fit is observed, DIF detection 

proceeds by comparing the item parameters or IRFs of the reference and focal groups 

using a statistical test with an a priori specified significance level.  If an item shows a 

statistically significant difference between the reference and focal groups, then the null 

hypothesis of “no DIF” is rejected and the item is flagged for further inspection and 

revision or removal. 

Within the parametric framework, DIF is said to be present when an item exhibits 

IRFs or parameters that differ across comparison groups beyond what is expected due to 

sampling and estimation error (Hulin et al., 1983; Lord, 1980).  Although it is advisable 

to form hypotheses in advance about which test items might show DIF and why, this is 

difficult, if not impossible, to do; so, every item is usually examined in practice.  DIF 

findings are often unintuitive but, in some cases, parametric methods provide insights for 

item revision through post hoc inspections of content.  For example, if a mathematical 

reasoning item shows a higher difficulty parameter for an English-as-second-language 

focal group relative to a native English speaker reference group, its content could be 
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reviewed to determine if abstruse vocabulary or ambiguous wording could have 

unintentionally affected what the item was designed to measure.  Yet, explanations for 

differences in discrimination, or differences in difficulty that run counter to all reasonable 

expectations, typically remain elusive. 

The benefits of parametric approaches come with a cost; namely, some models 

involve strong assumptions about the nature of the response data.  For example, with 

most parametric models, one must verify that the response data are essentially 

unidimensional (Stout, 1990); that is, one dominant or prepotent dimension underlies 

item responding.  With dichotomous data, tests for unidimensionality typically involve 

linear principal axis factoring of item tetrachoric correlations or procedures, such as 

modified parallel analysis, designed specifically to determine whether the data are 

sufficiently unidimensional for the application of a unidimensional IRT model (Drasgow 

& Lissak, 1983; Drasgow & Parsons, 1983; Hulin et al., 1983).  In practice, the 

unidimensionality assumption is not a severe limitation to model application, because 

most parameter estimation procedures have been shown to be robust to weak to moderate 

violations (Drasgow & Lissak, 1983; Kirisci, Hsu, & Yu, 2001).  However, even if the 

dimensionality of the response data and the model chosen for parameter estimation are in 

agreement, one must still examine model-data fit at the item level using graphical and/or 

statistical methods (Drasgow, Levine, Tsien, Williams, & Mead, 1995).  If the model 

does not fit the data well, then the benefits of using IRT for DIF detection might be 

diminished or even negated.  So, one must make an informed choice, based on previous 

simulation research, as to whether one should proceed with fitting a theoretically 
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appropriate model, as planned, or consider alternative models that provide better fit 

empirically as the basis for DIF detection. 

Parametric DIF Detection Methods 

Area Methods.  A wide variety of parametric methods are available for detecting 

DIF.  Some focus on comparing the area between IRFs estimated for reference and focal 

groups after establishing a common or base metric (Raju, 1988, 1990; Raju, van der 

Linden, & Fleer, 1995).  These are known as area methods.  An advantage of area 

methods is that they can be adapted for use with a wide variety of models, but the 

disadvantage is that the distributions of the test statistics are usually unknown and, thus, 

require computationally intensive resampling methods to obtain critical values for 

hypothesis testing.  Methods involving the direct comparisons of item parameters are 

therefore more common. 

Lord’s Chi-Square.  A popular item parameter comparison method is Lord’s 

(1980) chi-square, which can be used to test for differences in one or more item 

parameters simultaneously across reference and focal groups.  Vectors of item parameter 

differences and the inverse of the variance-covariance matrix for these differences are 

used to calculate a chi-square statistic that is compared to a critical value based on an a 

priori specified level of significance, with degrees of freedom (df) corresponding to the 

number of parameters examined for each item.  If the observed chi-square exceeds the 

critical value, then the null hypothesis of no DIF is rejected.  The advantages of this 

method are that it is readily adapted to any parametric model, critical values are easily 

obtained for different df and levels of significance, and the index is sensitive to both 

uniform and nonuniform DIF.  The disadvantage, however, is that it requires a complete 
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variance-covariance matrix, elements of which are not readily available from some 

common MML estimation programs for polytomous models.  Baker (1992) suggested 

setting off-diagonal elements of the variance-covariance matrices to zero in such 

situations, but the extent to which this simplifying assumption affects DIF detection is an 

open question.  Thus, polytomous test data are often examined using an alternative DIF 

test, such as the likelihood ratio test, which uses a model-comparison approach similar to 

what is done in CFA investigations. 

IRT Likelihood Ratio Test.  The item response theory likelihood ratio test for DIF 

(IRT-LR; Thissen et al., 1988) can be used with both polytomous and dichotomous data, 

and since its advent has proven to be one of the most effective methods for detecting 

uniform and nonuniform DIF and DTF.  Essentially, the test involves comparing the 

goodness of fit statistics for a series of nested models in which parameters for items 

suspected of DIF are constrained, or alternatively allowed to vary, relative to a baseline 

model.  If the change in the goodness of fit statistic, which is distributed roughly as a chi-

square, exceeds the critical value with df equal to the number of parameters in question, 

then the item is flagged for DIF; otherwise, the null hypothesis of no DIF is retained. 

As discussed by Stark, Chernyshenko, and Drasgow (2006), implementations of 

the IRT-LR test vary widely in the literature.  However, some implementations are more 

effective for DIF detection and control of Type I error than others, with Type I error rates 

varying from the expected level of .05 to levels higher than .90 in some cases.  In 

particular, the approach suggested originally by Thissen et al. (1988), referred to here as 

the constant anchor item (or free-baseline) method, has been shown to outperform the 

alternative approach, known as the all-other anchor (or constrained-baseline) method, 
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when multiple DIF items are present (Stark et al. 2006; Wang & Yeh, 2003).  This is 

because the constant anchor method begins by specifying a baseline model that has the 

best chance of fitting the reference and focal groups’ response data - namely, one in 

which the parameters for all items are free to vary, except for a presumably DIF free 

anchor item, or subset of items, that is needed to identify the latent metric.  Comparison 

models for DIF analyses are formed by constraining one at a time in addition to those in 

the anchor subset, which remains constant across comparisons.  In contrast, the all-other 

approach begins with a baseline model in which the parameters for all items are 

constrained across reference and focal groups, and comparison models for DIF analyses 

are formed by freeing one item at a time in succession.  The baseline model thus changes 

by necessity across iterations and the fit is certain to be adversely affected if a test 

contains any DIF items at all.  Research to date suggests that the greater the number of 

DIF items, the more “contaminated” is the baseline model, and the higher is the 

likelihood of Type I errors (e.g., Finch, 2005; Wang & Yeh, 2003). 

Stark et al. (2006) proposed constraining one item at a time, in addition to the 

anchor subset, and testing for DIF on all item parameters simultaneously (an omnibus 

test) to avoid issues, such as partial invariance that sometimes arise with CFA.  The 

results of their simulation indicated that, for both IRT and CFA applications, the constant 

anchor implementation of this omnibus test was more effective for uniform and 

nonuniform DIF detection and control of Type I error than the traditional all-other 

implementation.  These results supported and extended the findings of Wang and Yeh 

(2003), which showed that the constant anchor implementation was more effective than 

the all-other method under a variety of realistic testing conditions.  In addition, a recent 
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study by Lopez Rivas, Stark, and Chernyshenko (2009) demonstrated that high power for 

DIF detection could be achieved with the constant anchor method by using just one well 

discriminating unbiased referent.  Furthermore, like other recent studies (Wang, 2004; 

Wang & Yeh, 2003), it was found that power could be increased by using a group of 

unbiased anchor items (three), but improvements were generally small when the anchor 

group was expanded from three items to five. 

In summary, although IRT-LR procedures for detecting DIF may be seen by some 

as cumbersome, they have been shown overall to be effective and versatile.  A 

preponderance of studies have examined the efficacy of the all-other IRT-LR 

implementation and found that it works well under many conditions.  However, recently 

proposed constant anchor item implementations are beginning to garner more attention in 

the literature because of their higher power to detect DIF with better Type I error rates in 

realistic testing situations.  Consequently, both the constant and all-other implementations 

of the IRT-LR test were explored in the Monte Carlo study that is described later in this 

presentation. 

Nonparametric DIF Detection 

Nonparametric DIF detection methods include a variety of approaches revolving 

around contingency tables and regression.  Typically, these methods assume only that the 

underlying IRFs are monotonic, so that item responses can be summed to obtain a total or 

number correct score for each examinee that serves as an estimator of the latent trait, θ, 

often discussed in conjunction with parametric models.  Essentially, proportion correct 

scores for items, or bundles of items, are compared across reference and focal groups 
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after conditioning on number correct or total test scores, and various statistical 

corrections (e.g., Jiang & Stout, 1998) are used to distinguish DIF and DTF from impact. 

Besides making fewer assumptions about the data, another key advantage of 

nonparametric methods is that they do not require item parameter estimation.  These 

methods may therefore provide better DIF detection than parametric methods for 

analyses involving small samples.  However, the lack of parameters may make it more 

difficult to understand the source(s) of DIF when items are flagged.  In addition, because 

number correct score is only a good estimator of theta for long tests (e.g., 20 items or 

more), the performance of these methods with shorter tests is open to question. 

Nonparametric DIF Detection Methods 

Mantel-Haenszel.  Numerous nonparametric DIF detection methods have been 

developed, and one of the most widely used and extensively researched is the Mantel-

Haenszel procedure (MH; Holland & Thayer, 1988).  MH detects DIF by comparing the 

odds ratios of item endorsement frequencies across reference and focal groups after 

matching examinees on the trait measured by the test using total test scores.  Specifically, 

the reference and focal groups are split into K subgroups, representing different levels of 

the total test score, and at each score level, a 2 x 2 contingency table is constructed 

showing group membership as a function of item response frequency.  The odds of 

correctly answering an item at each score level is obtained for the reference and focal 

groups, and the results are aggregated across score levels to compute the MH statistic, 

which is distributed as a chi-square with 1 df.  If the observed MH exceeds the critical 

MH value (3.84), then the item is flagged as exhibiting DIF, and the process is repeated 
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for the remaining items.  (For details on the computations, interested readers are referred 

to Holland and Thayer [1988] and Hidalgo and López-Pina [2004].) 

Unlike parametric methods that involve concurrent calibration or linear 

transformations of parameter estimates to account for impact, impact is handled with MH 

by matching examinees on the ability, or latent trait, estimate prior to comparing response 

frequencies across groups.  Moreover, to aid in interpretation of MH results, a 

logarithmic transformation (Holland & Thayer, 1988) is sometimes applied to produce a 

scale that is symmetric about an origin of zero.  In that situation, negative values indicate 

that an item exhibits DIF against the focal group, whereas positive values indicate DIF 

against the reference group.  Some researchers have proposed using the magnitude of the 

transformed values as a way of gauging the practical importance of DIF (e.g., Zwick & 

Erickan, 1989), but whether or not such log odds results provide meaningful indications 

of effect size is left to readers to determine. 

In summary, the MH procedure is a straightforward and adaptable method for 

detecting DIF but it has two strong limitations.  First, although it can be extended to 

handle polytomous and even multidimensional data by expanding contingency tables and 

using more than one test score for matching examinees (e.g., Mazor, Kanjee, & Clauser, 

1995), the number of score categories quickly becomes large and problems with low cell 

frequencies can arise.  Second, research has shown that the MH procedure is generally 

ineffective at detecting nonuniform or crossing DIF.  This limitation has led to the 

development of other procedures such as the crossing simultaneous item bias test 

(CSIBTEST; Li & Stout, 1996) and the application of logistic regression to DIF detection 

(LOGREG; Swaminathan & Rogers, 1990).  These procedures have become increasingly 
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popular alternatives in applied measurement settings because both can detect 

unidirectional and crossing DIF and they are easy to implement. 

Crossing Simultaneous Item Bias Test.  CSIBTEST was developed by Li and 

Stout (1996) as an extension of the simultaneous item bias test (SIBTEST; Shealy & 

Stout, 1993) for DIF, which is rooted conceptually in multidimensional IRT.  According 

to Shealy and Stout, DIF occurs when examinees from comparison groups differ in their 

standing on a secondary dimension, which may or may not be meaningfully related to 

performance on the primary attribute measured by a test.  If the secondary dimension is 

considered unrelated to the purpose of testing, it is then referred to as a nuisance 

dimension or nuisance determinant, and the items showing DIF are said to be “biased;” 

otherwise, the items are said to exhibit benign DIF against the affected group.  (In 

educational measurement, a distinction is sometimes drawn between DIF and internal or 

measurement bias, which is overlooked in other fields, and which was not explicated 

earlier in this presentation for simplicity.) 

CSIBTEST builds on the foundational work of SIBTEST, which was designed to 

detect unidirectional DIF by comparing reference and focal group responses after 

conditioning on a matching subtest score.  The matching subtest can be specified by a test 

constructor if a subset of non-DIF items is available a priori, or it can be derived in a 

manner analogous to what was suggested by Thissen et al. (1988) for obtaining a non-

DIF set of constant anchor items to begin the free-baseline implementation of the IRT-

LR procedure.  However, because a priori information about DIF is usually not available 

and because the length of the matching subtest is an important concern, the matching 

subtest is often taken to be all items except the one under study, just as with the all-other 



www.manaraa.com

29 

 

implementation of the IRT-LR test.  The “automatic” option of the SIBTEST program 

(Stout, 1999) uses this all-other approach to test successively each item in a measure for 

DIF against the focal group, reference group, or either group by using one-, one-, or two-

tailed significance tests, respectively.  Examinees in the reference and focal groups are 

matched on levels of the matching subtest score and a regression-based correction is used 

to adjust for bias in the estimation of trait level as well as impact (Jiang & Stout, 1998; 

Shealy & Stout, 1993).  The null hypothesis of no DIF is tested for each item by 

computing a statistic called uniB , which has a mean of zero and is approximately 

normally distributed in large samples.  If the observed uniB  exceeds the critical value for a 

standard normal distribution at the desired level of statistical significance, or alternatively 

the observed p-value is less than the critical p-value, then a studied item is flagged as 

DIF. 

CSIBTEST (Li & Stout, 1996) extended the SIBTEST methodology to include 

the capability to detect crossing DIF as well as unidirectional.  The approaches to DIF 

detection are similar in that reference and focal group examinees are sorted into score 

categories based on matching subtest scores and the proportions of correct responses 

within these categories are compared.  However, unlike SIBTEST, CSIBTEST also 

attempts to estimate the point on the trait range at which the reference and focal group 

IRFs cross.  The computations for CSIBTEST and SIBTEST are almost identical, except 

that CSIBTEST partitions the sum of the group differences over the levels of the 

matching subtest scores into two components centered on the estimated crossing point, kc.  

In other words, rather than one summation over all the levels of matching subtest scores, 
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nk ...,,1,0 , two summations are required: 0 to kc – 1 and kc.+ 1 to n.  The CSIBTEST 

test statistic, croB , for the null hypothesis of no DIF is thus given by: 
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In the equations above, R represents the reference group, F represents the focal 

group, nk ...,,1,0  represents levels of matching subtest (Y) scores, and kc represents the 

estimated crossing point for the comparison IRFs.  If G is allowed to represent either the 

reference or focal group, then kGJ  represents the number of examinees in group G with 

matching subtest score level k and jGJ  is the number of examinees in each group thus 

kp̂  is the proportion of examinees at k, *

GkY  is the impact-adjusted mean for examinees on 

the studied item (or subtest/bundle of items, in the case of DTF analysis) having 

matching subtest score level k, cro̂  is the average weighted difference between the two 

marginal IRFs or, in other words, the sum of the unidirectional DIF against the reference 

group in the lower trait level and the unidirectional DIF against the focal group in the 
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higher trait level,  GkY ,ˆ 2  is the sample variance of the studied item (or bundle) 

among examinees having matching subtest score level k, and  cro ˆˆ  is the standard error 

of the croB  test statistic.  Note that because croB  depends on kc and there is “no easily 

derived distribution when no DIF exists,” a randomization test (Edgington, 1987) is used 

to determine statistical significance (Li & Stout, 1996, p. 654). 

According to Li and Stout (1996), an item exhibits crossing DIF if one group 

shows a significantly higher probability of a correct response in one trait range and the 

other group shows it in another.  Therefore, the identification of DIF type depends upon 

where the group IRFs cross.  This crossing point is estimated by regression and can 

consequently be outside of the matching subtest score range.  Specifically, for a matching 

subtest of length n, if the crossing point occurs between zero and n, that is, between none 

correct (or endorsed) and all correct, then crossing DIF is implied.  On the other hand, if 

the crossing point occurs at a value less than zero or greater than n, unidirectional DIF is 

implied. 

Li and Stout (1996) conducted a series of simulations and found that CSIBTEST 

demonstrated better Type I error (i.e., .05 or less) and power rates for nonuniform DIF 

detection than both the SIBTEST and MH procedures.  Furthermore, they illustrated 

CSIBTEST’s capability to distinguish unidirectional DIF from crossing DIF.  However, it 

is unknown how well this method works with tests that are relatively short, as well as 

with tests that contain a substantial proportion of DIF items.  In addition, given that the 

matching subtest typically consists of all items except the one under study (an all-other 

anchor implementation), questions arise as to whether power and Type I error rates could 

be improved by using a constant anchor approach to DIF detection – namely a matching 
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subtest comprising only a subset of DIF-free items that remains the same across all 

reference and focal group comparisons.  Doing so would allow one to examine the 

efficacy of the CSIBTEST methodology independently of the issue of contamination, but, 

in turn, raises questions as to the number of items needed to get reliable matching subtest 

score estimates; in IRT-LR terms, the issue is the length of the baseline model.  It is also 

unknown how well this method performs in comparison with other methods capable of 

detecting nonuniform or crossing DIF, such as the IRT-LR test and logistic regression.  

Moreover, as Finch and French (2008) noted, CSIBTEST’s ability to detect 

unidirectional DIF has been frequently overlooked.   

Logistic Regression.  The LOGREG approach to DIF detection was proposed by 

Swaminathan and Rogers (1990) to overcome the limitations of the MH procedure.  Their 

aim was to develop a method that was capable of detecting both uniform and nonuniform 

DIF within dichotomous data, yet was computationally simpler than approaches requiring 

the explicit estimation of item parameters, such as Lord’s chi-square (1980) or Thissen et 

al.’s IRT-LR test (1988).  A key virtue of the LOGREG approach is that DIF analysis can 

be conducted easily using common statistical packages, such as SAS and SPSS.  One 

must merely specify a series of comparison models involving examinee trait estimates 

(X), which are typically total test scores or total test scores computed without the item 

under study, a dummy variable for group membership (D), and the interaction of total test 

score with group membership (DX) as predictors.  Dichotomous item scores for each 

studied item serve as the dependent variables.  By statistically testing the change in the 

goodness of fit or R-square for compact models involving only total test score as a 

predictor versus augmented models that include the additional term(s) involving group 
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membership, one can determine if uniform or nonuniform DIF is present.  (One can also 

examine the statistical significance of the beta weights associated with the group 

membership terms in the augmented models.) 

To illustrate this process for detecting DIF, consider the logistic regression model, 

 
z

z

e

e
zuP




1
1 .   Here,  zuP 1  represents the probability of a correct response to 

the studied item (the item suspected of DIF) and z represents a linear function of 

predictor variables.  For the baseline model that includes only total score as a predictor, 

Xz 10   .  For the augmented model used to test for DIF, 

DXDXz 3210   .  If the goodness of fit improves or R-square increases 

significantly when adding the additional predictor terms (D and/or DX), then the item 

exhibits DIF.  Specifically, if 3  is significant, then the item is flagged for nonuniform 

DIF.  If only 2  is significant, then the item is flagged for uniform DIF.  If neither 2  

nor 3  are significant, then the null hypothesis of no DIF is retained. 

Although similar in appearance to the IRT two-parameter logistic model (2-PLM; 

Birnbaum, 1968), the logistic regression DIF detection method is often referred to as 

nonparametric, because, like MH and CSIBTEST, it does not involve estimation of item 

or latent trait parameters.  Instead, the LOGREG procedure uses total test score as a trait 

estimate (Millsap & Everson, 1993) and response probabilities are compared for 

reference and focal groups after taking trait differences into account. 

Overall, simulation studies have shown that the LOGREG procedure provides as 

good or better uniform DIF detection than MH (Rogers & Swaminathan, 1993; 

Swaminathan & Rogers, 1990).  Because it is also capable of detecting nonuniform DIF 
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and can be extended for use with tests designed intentionally to be multidimensional by 

the inclusion of additional predictor variables (Mazor et al., 1995), it is certainly worthy 

of consideration as a DIF detection tool.  Its ease of implementation in almost any 

statistical software package broadens its appeal among non-psychometricians.  However, 

studies of LOGREG power and Type I error rates have shown mixed results, with the 

effects of impact, for example, remaining unclear (e.g., Finch & French, 2007; Li & 

Stout, 1996; Narayanan & Swaminathan, 1996).  Also unknown is whether LOGREG 

performance can be improved by using a constant subset of non-DIF items, rather than 

total test score, as a predictor in comparison models when DIF items are present.  The 

issue of contamination is just as relevant here as with CSIBTEST and IRT-LR, so 

research is clearly needed to explore the effects of matching subtest length and 

implementation methods (all other vs. constant anchor) on LOGREG DIF detection. 

Study Rationale and Objectives 

This chapter has provided a brief review of parametric and nonparametric DIF 

detection methods.  Some of these methods have been studied and their efficacy 

documented under a variety of conditions, while others are still relatively new and 

underutilized.  Arguably, even so-called industry standards differ widely enough in terms 

of implementation that researchers are still discovering issues that may have substantial 

effects on power and Type I error rates.  This has led to myths and confusion about which 

methods should be preferred and when.  Moreover, what is considered realistic in the 

context of large scale testing programs is sometimes quite different from what is seen in 

typical industrial-organizational settings and in academic research outside of 
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measurement circles; so studies comparing multiple methods under conditions likely to 

be encountered in these situations are needed. 

This paper proposes such a study.  Specifically, the efficacy of the IRT-LR 

(Thissen et al., 1988), the LOGREG (Swaminathan & Rogers, 1990), and the CSIBTEST 

(Li & Stout, 1996) DIF detection methods was compared under a wide range of 

experimental conditions using a Monte Carlo simulation.  The constant anchor 

implementation of the IRT-LR test has been shown to perform well in three recent 

investigations (Lopez Rivas et al., 2009; Stark et al., 2006; Wang & Yeh, 2003), so it 

served as a benchmark for examining the efficacy of the conventional all-other 

implementation of IRT-LR.  In addition, both the popular LOGREG and the understudied 

CSIBTEST methods was examined using both a constant set of anchor items and an all-

other implementation, in which all test items but the one under study serve as anchors.   

The objectives of this study are twofold.  The first objective is to compare the 

power and Type I error rates of CSIBTEST, LOGREG, and IRT-LR using dichotomous 

data exhibiting a wide array of DIF types – specifically those defined in Chapter 3 and 

illustrated in panels (b) through (f) of Figure 4: uniform, unidirectional mixed, 

nonuniform, functionally uniform, and crossing mixed.  To the author’s knowledge, this 

is the first study to examine the capacity of these procedures to detect multiple forms of 

DIF and will provide the most comprehensive assessment of their power to date. 

The second objective of this study is to examine the accuracy of DIF classifications made 

by the selected methods.  That is, can CSIBTEST, LOGREG, and IRT-LR reliably 

distinguish between the different types of DIF being simulated?  In other words, when 

and why is the null hypothesis of no DIF rejected for the wrong reason (i.e., a Type III 
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error; Mosteller, 1948)?  A recently study by Finch and French (2008) touched on this 

issue; the authors reported the frequency with which DIF items were erroneously 

detected, referring to them collectively as “anomalous Type I errors”. This study 

examined the DIF classifications produced by CSIBTEST, LOGREG, and IRT-LR. 
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CHAPTER 5 

Method 

Study Design 

A Monte Carlo simulation was conducted to examine the power, Type I, and Type 

III error rates of three DIF detection methods with independent variables manipulated as 

follows: 

1. Method for detecting DIF: (a) IRT-LR, (Thissen et al., 1988), (b) LOGREG 

(Swaminathan & Rogers, 1990), and (c) CSIBTEST (Li & Stout, 1996); 

2. Test length: (a) 15 items and (b) 30 items (to reduce noise in the Monte Carlo 

study, the 15-item test was nested within the 30-item test);   

3. Sample size per group: (a) 250, (b) 500, and (c) 1000;  

4. Impact:  (a) None (both reference and focal group trait distributions were 

standard normal, N[0,1]), and (b) one half standard deviation against the focal 

group (the reference group distribution was standard normal and the focal 

group distribution was N[-0.5, 1]); and 

5. Implementation of DIF test: (a) All-other (the baseline model, matching 

subtest, or trait estimates needed for the respective comparisons were created 

using all items except the one under study), and (b) Constant (the baseline 

model, matching subtest, or trait estimates needed for all DIF analyses were 

based on a preselected, fixed subset of non-DIF items).  



www.manaraa.com

38 

 

In addition to the variables listed above, nested factors of particular interest were 

explored: 

 Number of items in the anchor/matching subtest: (a) 5 items in the 15-item 

test length conditions and (b) 10 items in the 30-item test length conditions 

(the 10-item anchor group contained the five items from the 15-item test plus 

an additional five); 

 Magnitude of DIF, defined as the area between comparison IRFs calculated 

using a formula provided by Raju (1988): (a) None, (b) 0.4 per DIF item, and 

(c) 0.8 per DIF item, with 5 DIF items specified in the 15-item test length 

conditions and 10 DIF items specified in the 30-item test length conditions; 

and 

 DTF in the 0.4 and 0.8 DIF conditions: (a) DTF (DIF simulated to favor only 

one group and accumulates across items), and (b) No DTF (DIF simulated to 

favor both groups and cancels across items to produce negligible DTF). 

In summary, this study involved 360 conditions representing unique combinations 

of the independent variables, as shown in Table 1.  In each condition, 100 separate 

analyses, or replications, were conducted.  Unique data sets were generated for both the 

reference and focal groups on each replication (details on data generation are presented 

later in this chapter), the DIF detection methods applied, and the power, Type I, and Type 

III error rates computed over replications. 
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Table 1. 

Summary of Simulation Conditions for CSIBTEST, IRT-LR, and LOGREG 

 

 
 

In this Monte Carlo study, Type I error represented the proportion of times a non-

DIF item was flagged incorrectly as a DIF item across replications; in other words, it is 

the number of false positives divided by the number of replications. On the other hand, 

power was defined as the number of times an item known to exhibit DIF is flagged by a 

DIF detection method; therefore, it is the number of true positives (a.k.a., hits) divided by 

the number of replications.  When a hit occurs, the DIF type indicated by a detection 

 
Test length

Sample size 

per group Impact

DIF 

magnitude DTF Test length

Sample size 

per group Impact

DIF 

magnitude DTF

15 250 .0 .0 .0 30 250 .0 .0 .0

15 500 .0 .0 .0 30 500 .0 .0 .0

15 1000 .0 .0 .0 30 1000 .0 .0 .0

15 250 -.5 .0 .0 30 250 -.5 .0 .0

15 500 -.5 .0 .0 30 500 -.5 .0 .0

15 1000 -.5 .0 .0 30 1000 -.5 .0 .0

15 250 .0 .4 DTF 30 250 .0 .4 DTF

15 500 .0 .4 DTF 30 500 .0 .4 DTF

15 1000 .0 .4 DTF 30 1000 .0 .4 DTF

15 250 -.5 .4 DTF 30 250 -.5 .4 DTF

15 500 -.5 .4 DTF 30 500 -.5 .4 DTF

15 1000 -.5 .4 DTF 30 1000 -.5 .4 DTF

15 250 .0 .4 No DTF 30 250 .0 .4 No DTF

15 500 .0 .4 No DTF 30 500 .0 .4 No DTF

15 1000 .0 .4 No DTF 30 1000 .0 .4 No DTF

15 250 -.5 .4 No DTF 30 250 -.5 .4 No DTF

15 500 -.5 .4 No DTF 30 500 -.5 .4 No DTF

15 1000 -.5 .4 No DTF 30 1000 -.5 .4 No DTF

15 250 .0 .8 DTF 30 250 .0 .8 DTF

15 500 .0 .8 DTF 30 500 .0 .8 DTF

15 1000 .0 .8 DTF 30 1000 .0 .8 DTF

15 250 -.5 .8 DTF 30 250 -.5 .8 DTF

15 500 -.5 .8 DTF 30 500 -.5 .8 DTF

15 1000 -.5 .8 DTF 30 1000 -.5 .8 DTF

15 250 .0 .8 No DTF 30 250 .0 .8 No DTF

15 500 .0 .8 No DTF 30 500 .0 .8 No DTF

15 1000 .0 .8 No DTF 30 1000 .0 .8 No DTF

15 250 -.5 .8 No DTF 30 250 -.5 .8 No DTF

15 500 -.5 .8 No DTF 30 500 -.5 .8 No DTF

15 1000 -.5 .8 No DTF 30 1000 -.5 .8 No DTF

Notes.  CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic 

regression. DTF indicates that all DIF items favor the reference group. No DTF indicates that DIF items may favor either group. 

For each procedure, both the constant and all-other implementations were used. The number of DIF items and the number 

of items in the constant baseline conditions was equal to a third of test lenght condition (i.e., 5 for each in the 15-item test 

and 10 for each in the 30-item test).
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method can be checked for accuracy.  If the DIF type was mischaracterized (e.g., an item 

known to exhibit nonuniform DIF is misclassified as a uniform DIF item), then a 

classification error, or Type III error (Mosteller, 1948), is said to occur.  Type III errors 

were thus calculated as the number of misclassifications divided by the number of hits. 

Data Generation 

This simulation study focused on the efficacy of DIF detection with 

unidimensional dichotomous data.  Therefore, data were simulated in accordance with a 

unidimensional model that reasonably characterizes the process of answering 

dichotomously scored test items.  In this study, the three-parameter logistic IRT model 

(3-PLM; Birnbaum, 1968) was used for response data generation because it has been 

shown to fit cognitive ability data well in a multitude of studies over the last 30 years 

and, though its role in personality data remains unclear (Reise & Waller, 2002), it has 

been used to calibrate personality data when response sets, such as faking or impression 

management, were suspected (e.g., Stark et al., 2004). 

In essence, an IRT model relates the psychometric properties of items and a 

respondent’s standing on the underlying construct measured by a test to the probability of 

correctly answering (or endorsing) an item.  The equation for the 3-PLM is shown below, 
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i is an index for examinees, j is an index for items, uij represents the i
th

 examinee’s scored 

response to the j
th

 item  (uij = 1 if correct; 0 otherwise),  iijuP 1  represents the 
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probability that an examinee will answer an item correctly given his or her trait level i  

and the item’s parameters ),,( jjj cba , which reflect discrimination, difficulty, and the 

probability of obtaining the correct answer just by guessing, and 1.7 is a scaling constant 

that relates the logistic model item parameters to the metric of a normal ogive model 

(Reise & Waller, 2002, p. 91). 

To generate item response data using the 3-PLM, trait scores and item parameters 

are needed.  In this study, trait scores for examinees in reference and focal groups of 

various sizes were obtained by sampling values from independent normal distributions. 

For each examinee, a trait score, i , is substituted into Equation 5 along with an item’s 

parameters, ),,( jjj cba , and the probability of a correct response is computed.  A random 

number is then sampled from a uniform distribution and compared to this response 

probability.  If the response probability is greater than the random number, then the item 

response, uij, is scored as 1; otherwise it is scored as 0.  This process is repeated for all 

test items to obtain a response pattern for each examinee, and the method is repeated for 

other examinees until the desired number of response patterns has been created.  In this 

study, 3-PLM response data were generated using the 3PLGEN computer program 

(Stark, 2000). 

Constructing Tests for Simulations.  Tests consisting of 15 and 30 items were 

created for the Monte Carlo study by randomly selecting item parameters from tables 

published by Narayanan and Swaminathan (1996), which showed item calibration results 

for an administration of the Graduate Management Admissions Test.  One exception to 

this random process was the choice of Item 1, which was chosen to provide an item with 

reasonably high discrimination and moderate difficulty in the anchor set, as per the 
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findings of Lopez Rivas et al. (2009).  Following the procedure used by Narayanan and 

Swaminathan (1996), the c-parameters for all items were set to 0.2, which is near the 

upper end of that parameter’s typically observed range (Reise & Waller, 2002).  

Importantly, because manipulations involving c-parameters are difficult to interpret in the 

context of DIF studies and guessing is a realistic possibility in many testing applications, 

fixing the c-parameters reduces Monte Carlo noise. 

Table 2 presents the item discrimination and item difficulty parameters for the 

resulting 15- and 30-item tests that were used to generate item responses for both the 

reference and focal groups.  Trait scores for the respective groups were sampled from 

independent normal distributions, which may differ depending on whether impact is 

desired.  Note that the items marked by an asterisk are the DIF-free subset that were used 

in the constant method conditions and items marked by two asterisks had their parameters 

shifted to produce DIF having magnitudes of 0.4 or 0.8 in those respective DIF 

conditions. 
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Table 2. 

Generating Parameters for 15- and 30-Item Tests for No DIF Conditions 

 

Simulating Impact.  To simulate impact against the focal group in selected 

conditions, trait scores for focal group examinees were sampled from normal 

distributions having means of -0.5 and variances of 1.0; reference group trait scores were 

sampled from standard normal distributions.  In the “no impact” conditions, both the 

reference and focal group trait scores were sampled from independent standard normal 

distributions. 

 Simulating DIF and DTF.  The most common way of simulating differential 

functioning is to construct tests that include a designated number or percentage of DIF 

items.  DIF is then simulated on a particular item by shifting a comparison group’s item 

parameters higher or lower by designated amounts prior to response data generation.  

(With the 3-PLM, it is conventional to manipulate only the discrimination, a, and 

 Item a b Item a b

1* 1.05 0.10 16* 0.73 0.61

2* 0.44 -0.30 17* 1.11 -0.35

3* 0.55 -1.06 18* 1.32 0.57

4* 0.82 1.02 19* 0.55 1.09

5* 1.02 1.28 20* 0.92 1.13

6 0.82 0.61 21 0.64 -1.55

7 0.92 0.42 22 1.01 0.81

8 0.65 1.68 23 0.61 -0.53

9 0.29 -1.39 24 0.70 1.05

10 0.51 -0.09 25 1.02 0.64

11** 1.00 0.00 26** 1.00 -0.50

12** 0.56 0.00 27** 0.60 0.00

13** 0.56 2.00 28** 0.60 2.00

14** 0.56 0.00 29** 0.60 -0.28

15** 1.12 0.00 30** 1.20 -0.50

Note. * DIF-free item to be used in constant method conditions. ** DIF item in .4 

and .8 DIF conditions. a  = item discrimination. b  = item difficulty. For 15-item test, 

items 1 to 15 were used. All item c -parameters (lower asymptotes) were set to .2.
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difficulty, b, parameters.)  The magnitude and direction of these shifts can be held 

constant or allowed to vary across items, depending on the purpose of the study.  Because 

this study aims to examine the power, Type I, and Type III error rates associated with 

different DIF types and magnitudes, the latter approach to simulating DIF was adopted.  

That is, each test included five DIF item types (one of each in the 15-item test, for a total 

of 5 DIF items, and two of each in the 30-item test, for a total of 10) and each of these 

reflected one of the DIF prototypes shown in Figure 4, panels b through f; thus, each DIF 

item in this study exhibited parameter shifts that achieved the desired DIF prototype and 

magnitude. 

Fixed shifts can produce discrepant effects on the area between focal and 

reference group IRFs, depending on an item’s discrimination and difficulty parameters, 

so the size of the shifts for items 11 through 15 and 26 through 30 were chosen 

empirically using an unsigned area DIF equation for 3-PLM, provided by Raju (1988): 

 

 
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 RF

RF
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RF bb
aa

bbaa

aa
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7.1
exp1ln

7.1

2
1 , where (6) 

 

the subscripts R and F represent the reference and focal groups, respectively, and a, b, 

and c represent the 3-PLM item parameters.  By substituting different values of a and b 

into Equation 6, along with c = 0.2, the author identified shifts in the focal group a- and 

b-parameters that yielded the desired DIF magnitudes of 0.4 and 0.8. 

The resulting parameters for the DIF items are shown in Tables 3 and 4 by DIF and test 

length condition.  For the 0.4 and 0.8 DIF with maximum DTF conditions (Table 3), the 
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reference group item responses were generated using the parameters for the 15- and 30-

item tests shown in Table 2, whereas focal group item responses were generated by 

substituting the appropriate values for items 11 through 15 and 26 to 30 given in Table 3.  

Note that the parameters in Table 3 can be compared to those marked with a double 

asterisk in Table 2 to observe the shifts that were required to achieve the desired DIF 

magnitudes. 

 

Table 3. 

Discrimination and Difficulty Parameters for Creating Desired Magnitudes of DIF with 

DTF 

 

 

For the 0.4 and 0.8 DIF with no DTF conditions (Table 4), two of the DIF item 

types: Unidirectional mixed (items 15 and 30) and functionally uniform (items 13 and 

28), favored the focal group and the remaining DIF items favored the reference.  Thus, 

the generating parameters for both groups are presented in Table 4.  These DIF item types 

Item a b a b

11 1.00 0.50 1.00 1.00

12 0.85 0.00 1.79 0.00

13 0.85 2.00 1.79 2.00

14 0.81 0.25 1.50 0.50

15 1.40 0.50 2.01 0.99

26 1.00 0.00 1.00 0.50

27 0.95 0.00 2.28 0.00

28 0.95 2.00 2.28 2.00

29 0.89 0.00 1.81 0.22

30 1.48 0.00 2.09 0.50

Note. a = item discrimination. b = item difficulty.  DIF values correspond 

to the area between the group item response functions (Raju, 1988). All 

item c- parameters (lower asymptotes) were set to .2.

Focal group (.4 DIF) Focal group (.8 DIF)
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were selected for this purpose because they generated the least DTF possible given the 

DIF item types employed in this study (see Appendix B for details). 

 

Table 4. 

Discrimination and Difficulty Parameters for Creating Desired Magnitudes of DIF 

without DTF 

 

 

DIF and DTF Manipulation Check.  To ensure that the parameter shifts for the 

DIF items produced effects consistent with their condition, a series of manipulation 

checks were conducted.  First, as can be seen from Figures 5 through 8, the primary 

difference between the DIF magnitude conditions (Figures 5 and 7 for 0.4 DIF and 

Figures 6 and 8 for 0.8 DIF) lies in the total area between the reference and focal group 

IRFs, with the areas being somewhat larger in the 0.8 condition; it should, therefore, be 

easier to detect DIF in those cases. 

Item a b a b a b a b

11 1.00 0.50 1.00 0.00 1.00 1.00 1.00 0.00

12 0.56 0.00 0.85 0.00 0.56 0.00 1.79 0.00

13 0.85 2.00 0.56 2.00 1.79 2.00 0.56 2.00

14 0.56 0.00 0.81 0.25 0.56 0.00 1.50 0.50

15 1.12 0.00 1.40 0.50 1.12 0.00 2.01 0.99

26 1.00 0.00 1.00 -0.50 1.00 0.50 1.00 -0.50

27 0.60 0.00 0.95 0.00 0.60 0.00 2.28 0.00

28 0.95 2.00 0.60 2.00 2.28 2.00 0.60 2.00

29 0.60 -0.28 0.89 0.00 0.60 -0.28 1.81 0.22

30 1.20 -0.50 1.48 0.00 1.20 -0.50 2.09 0.50

Note. a = item discrimination. b = item difficulty.  DIF values correspond to the area between the group 

item response functions (Raju, 1988). All item c- parameters (lower asymptotes) were set to .2.

Reference group Focal group

.4 DIF

Focal group

.8 DIF

Reference group
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Figure 5.  Reference and focal group item response functions (IRFs) and test characteristic curves (TCCs) for the 0.4 DIF magnitude 

per item with DTF conditions.  (Note: DIF = differential item functioning and DTF = differential test functioning). 
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Figure 6.  Reference and focal group item response functions (IRFs) and test characteristic curves (TCCs) for the 0.8 DIF magnitude 

per item with DTF conditions.  (Note: DIF = differential item functioning and DTF = differential test functioning). 
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Figure 7.  Reference and focal group item response functions (IRFs) and test characteristic curves (TCCs) for the 0.4 DIF magnitude 

per item with no DTF conditions.  (Note: DIF = differential item functioning and DTF = differential test functioning). 
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Figure 8.  Reference and focal group item response functions (IRFs) and test characteristic curves (TCCs) for the 0.8 DIF magnitude 

per item with no DTF conditions.  (Note: DIF = differential item functioning and DTF = differential test functioning). 
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Next, as can be seen from Figures 5 through 8, the DIF item generating 

parameters for all four DIF conditions exhibit a range of DIF types that coincided with 

the examples shown in Figure 4.  Specifically, items 11 and 26 represent uniform DIF 

(unequal b-parameters and equal a-parameters) yielding reference and focal group IRFs 

that are nearly parallel over almost the entire trait range.  Items 12 and 27 illustrate 

nonuniform DIF (unequal a’s and equal b’s) resulting in IRFs that cross in the middle of 

the trait range.  Items 13 and 28 represent functionally uniform DIF (unequal a’s and 

equal, but extreme, b’s) exhibiting IRFs that cross outside the middle of the trait range.  

Item 14 and 29 show crossing mixed DIF (unequal a’s and unequal b’s) having IRFs that 

cross near the middle of the trait range.  Item 15 and 30 represent unidirectional mixed 

DIF (unequal a’s and unequal b’s) resulting in IRFs that are not quite parallel; yet they do 

not cross until relatively low and/or high trait levels.  Finally, in relation to the DTF 

manipulation, note how the group TCCs in Figures 5 and 6, representing the DIF with 

maximum DTF conditions, show that only the reference group benefits from DTF, 

whereas in Figures 7 and 8, representing the DIF with minimal DTF conditions, the TCCs 

are nearly identical or cross indicating that both groups benefit. 

As an additional check of the DTF manipulation, a small simulation was 

conducted in which data sets of 1000 reference and 1000 focal group examinees were 

generated by sampling trait scores from independent N(0, 1) distributions using the 

respective item parameters for the 15- and 30-item tests in the no impact, DIF conditions.  

The data were then analyzed using the differential functioning of items and tests 

computer program (DFITD4; Raju, 1995). 
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The focal and reference group TCCs calculated using the generating parameters are 

presented in Figure 9 by condition.  As expected, the TCCs in the no DTF conditions 

overlap almost perfectly (panels c and g) or they cross (panels d and h) so that differences 

in expected scores cancel when averaging across trait levels. On the other hand, the TCCs 

for the 0.4 DTF (panels a and b) and 0.8 DTF (panels e and f) conditions show 

systematic, non-cancelling discrepancies favoring the reference group. These results, in 

conjunction with the remarkable similarity of the group TCCs shown in Figures 5 

through 9, indicate that the objective of minimizing DTF was met. 
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Figure 9.  Estimated reference and focal group test characteristic curves (TCCs) by test 

length, DIF and DTF magnitude conditions.  (Note: DIF = differential item functioning 

and DTF = differential test functioning.). 
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Implementation of DIF Detection Methods 

IRT-LR analyses were conducted using MULTILOG 7.0 (Thissen, 2003), 

LOGREG analyses using SPSS 17.0 (SPSS Inc., 2008), and CSIBTEST analyses using 

the CSIBTEST software (Stout, 1999).  Details of how each analysis was conducted are 

provided below.  All significance tests were based on a critical p-value of .05 for 

rejecting the null hypothesis of no DIF. 

Table 5 illustrates how classification accuracy was examined for the three DIF 

detection methods under investigation.  Column 2 shows the broad DIF types, or 

categories, that each procedure is designed to detect.  Column 3 shows how DIF 

prototypes (Figure 4), as well as the specific DIF items simulated in tests examined here 

(Figures 5 through 8), are subsumed within these broad DIF categories.  Finally, Column 

4 denotes the key statistical criteria that were used with the respective detection methods 

to make broad DIF classification decisions when hits occur. 

For example, if a hit occurred using the IRT-LR test, the DIF would be labeled as 

“Nonuniform” (Column 2) if there was a statistically significant difference in the a-

parameters across the reference and focal groups, but a nonsignificant difference in the b-

parameters (Column 4).  The classification decision would be deemed correct if the type 

of DIF simulated by shifting focal group parameters matched the prototypical form 

indicated in the adjacent cell in Column 3 (i.e., “nonuniform” or “functionally uniform”).  

Otherwise, the outcome would be viewed as a Type III error.  The same process would be 

used to examine classification accuracy with the CSIBTEST and LOGREG methods, 

except that crossing point location and the significance of group and interaction terms, 

respectively, would be used in lieu of item parameter comparisons.  Additional examples 
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of accurate classifications and Type III errors for each procedure are presented in the 

following sections. 

 

Table 5. 

Classification Criteria for Items Flagged as Exhibiting DIF by each DIF Detection 

Procedure 

 

 

In addition, item-level identification results were presented in the form of a 

“confusion matrix.” A confusion matrix concisely shows the concordance between the 

type of DIF identified by a procedure and the broad DIF type that was simulated.  Thus, 

for all items flagged as DIF (false positives as well as hits), the known and observed DIF 

types could be readily compared to determine whether each DIF detection method was 

prone to a particular classification error (e.g., systematic misidentification of uniform DIF 

as nonuniform or mixed). 

Procedure Broad DIF Type

DIF Prototype Falling within Broad 

DIF Type Key Criteria for Classifying Flagged Item

CSIBTEST Unidirectional Uniform, functionally uniform, and 

unidirectional mixed

Presence of extreme crossing point

Crossing Nonuniform and crossing mixed Presence of non-extreme crossing point

IRT-LR Uniform Uniform Unequal b -parameter only

Nonuniform Nonuniform and functionally 

uniform

Unequal a -parameter only

Mixed Crossing mixed and unidirectional 

mixed

Unequal a - and b -parameters

LOGREG Uniform Uniform Only group term is statistically significant

Nonuniform Nonuniform and functionally 

uniform

Only trait estimate by group interaction term is 

statistically significant

  Mixed  Crossing mixed and unidirectional 

mixed

 Both group term and trait estimate by group 

interaction term are statistically significant

Note . CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = 

logistic regression. a  = item discrimination. b  = item difficulty.
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IRT Likelihood Ratio Test.  The first step of the constant anchor IRT-LR test 

(Lopez Rivas et al., 2009; Stark et al., 2006) was to construct a baseline model that 

allowed all items parameters to vary across reference and focal groups, with the 

exception of an unbiased anchor set. In this case, the anchor set included items 1 through 

5 for the 15-item test and, in addition, items 16 through 20 for the 30-item test.  Next, 

compact comparison models, one for each item under investigation, were formed by 

simultaneously constraining a studied item’s parameters (i.e., requiring them to be equal) 

across the reference and focal groups.  For the all-other IRT-LR implementation, a 

baseline model was formed by constraining all items across groups, and comparison 

models were formed by freeing parameters for just one item at a time. 

For both implementations, the change in goodness of fit between a baseline and a 

comparison model was compared to a chi-square having degrees of freedom equal to the 

difference in model parameters.  Thus, when testing for DIF on a- and b-parameters 

simultaneously, the observed chi-square was compared to a critical chi-square having 2 

df, and if the observed chi-square exceeded the critical chi-square, then the studied item 

was flagged as DIF.  Note that impact is addressed in MULTILOG by fixing the latent 

trait distribution for the reference group to standard normal (i.e., mean = 0 and standard 

deviation = 1) and allowing the focal group mean and standard deviation to vary 

(Thissen, 2003). 

As an example, if investigating DIF with a 15-item test, a constant baseline model 

would be formed by allowing parameters for all items to vary across the reference and 

focal groups, except for an anchor subset – say, items 1 through 5.  DIF analyses would 

then be conducted for items 6 through 15.  To test for DIF on Item 6, the parameters for 
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Item 6 would be constrained in addition to the anchor group and the change in the 

goodness of fit for this model relative to the baseline model would be compared to a 

critical chi-square having df equal to the difference in the number of parameters 

estimated.  If both the discrimination and difficulty parameters for Item 6 were 

constrained simultaneously (i.e., an omnibus test for DIF due to difficulty and 

discrimination), then the critical chi-square would be based on 2 df  99.52

05.;2  .  If, 

alternatively, one wished to test for DIF on just one parameter at a time (e.g., 

discrimination or difficulty), the critical chi-square would be based on 1 df  84.32

05.;1  .  

In any case, the process would be repeated for the remaining studied items, 7 through 15. 

For the all-other implementation, the process would be similar except for the 

model construction aspects. Specifically, the baseline model would be formed by 

constraining all 15 items across reference and focal groups. Then, a comparison model 

for, say, Item 6 would be formed by freeing just the discrimination and/or difficulty 

parameters for Item 6 and comparing the change in goodness of fit to a critical chi-square 

with the appropriate degrees of freedom. If the improvement in fit was statistically 

significant, then Item 6 would be labeled a DIF item. The process would then be repeated 

for items 7 through 15. 

Because MULTILOG does not explicitly report information about DIF type in 

connection with a statistically significant omnibus test, additional analyses were needed 

to examine DIF classification accuracy in a manner consistent with the other methods 

explored in this investigation.  Specifically, each time a known DIF item was flagged by 

an omnibus IRT-LR test, follow-up 1 df tests were performed to determine whether the 

apparent cause of DIF accorded with the parameter(s) that were manipulated.  For 
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example, if an item known to have uniform DIF was flagged by an omnibus test, two 

follow-up 1 df tests on the individual a- and b-parameters of that item were conducted.  If 

only the follow-up test constraining or freeing the b-parameter was significant, then the 

detection was considered an accurate identification of uniform DIF.  However, if both 

follow-up tests were significant, then the result would be counted as a Type III error, 

because it was known a priori that uniform DIF was simulated by shifting only the focal 

group b-parameter.  Of course, a Type III error would also result if uniform DIF were 

simulated and only the follow-up test on the a-parameter was significant. 

Logistic Regression.  Logistic regression DIF analysis can be conducted using 

SPSS or other popular statistical packages.  The process begins by obtaining a trait 

estimate for each examinee. This can be done by computing a number correct score based 

on all items or by computing a series of number correct scores that exclude the item 

under study in each step of the DIF analysis.  (There is still debate as to whether the 

studied item should be included or excluded in the total score computation.  However, I 

chose to exclude the studied item here for consistency with the all-other IRT-LR 

implementation and with the way CSIBTEST creates matching subtests under the 

“automatic” DIF option described in the next section).  Conversely, a subset of items 

could be used as the trait estimate, namely, items 1 to 5 in the 15-item test and items 1 

through 5 as well as items 15 through 20 in the 30-item test, as was done in the constant 

anchor conditions. 

Next, for each suspect item, a logistic regression analysis is conducted in which 

the dependent variable is the studied item response and the predictor variables are 

examinee trait estimate, group membership, and a trait by group interaction.  Trait 
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estimate can be entered as a predictor in Block 1, and the group membership and 

interaction terms entered in Block 2.  If the goodness of fit improves significantly when 

the group membership and interaction terms are added, as indicated by the change in log 

likelihood values based on a 2 df chi-square test, then the studied item is flagged as DIF. 

In this simulation, power and Type I error rates were computed in the usual 

manner and, when an item known to exhibit DIF was correctly flagged by the LOGREG 

procedure, the statistical significance of the regression weights for the group and 

interaction terms were examined to determine which type of DIF was identified.  (The 

statistical significance of the individual parameters was tested using a Wald chi-square 

test for which the beta estimate is divided by its squared standard error and the resulting 

value compared to a critical chi-square with 1 df).  Specifically, a significant group term 

suggests uniform DIF, whereas a significant interaction term suggests nonuniform DIF.  

If both terms are significant, then mixed DIF is implied.  For example, if an item was 

known to exhibit uniform DIF, then it would be correctly classified as uniform if only the 

group term was significant.  Alternatively, if both terms were significant or if only the 

interaction term was significant, then the classification would be considered a Type III 

error. 

Crossing Simultaneous Item Bias Test.  Stout’s (1999b) software was used to 

conduct CSIBTEST analyses using the “automatic single-item” option, which tests for 

DIF one item at a time, in succession.  This is what has been referred to previously as the 

all-other anchor approach, because the respective matching subtests are composed of all 

items except the one under study.  To examine the efficacy of a constant-anchor approach 

with CSIBTEST, a predefined set of DIF-free items was provided for the matching 
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subtest  items 1 through 5 for the 15-item test, and items 1 through 5 plus 16 through 20 

for the 30-item test.  Note that CSIBTEST requires a user to provide an estimate of the 

proportion of correct responding due to guessing; this was set at 0.2 in this simulation, as 

per the recommendation in the user manual. 

Unlike the IRT-LR and LOGREG methods, when CSIBTEST detects DIF, the 

result is labeled as either “Crossing” or “Unidirectional” in the program output, 

depending on the estimated location of the crossing point (the trait level at which the 

reference and focal group IRFs cross).  In this study, a Type III error was recorded if the 

label appearing in the program output (Table 3, Column 2) was discordant with the type 

of DIF simulated (Table 3, Column 4).  In other words, if the label was Unidirectional 

and the DIF type simulated was nonuniform or crossing mixed DIF, then a Type III error 

would be recorded; Crossing on the other hand, would be considered a correct 

classification. 

Because CSIBTEST cannot identify items as exhibiting both crossing and 

unidirectional DIF (these definitions are mutually exclusive), the accurate classification 

of mixed DIF items was based on whether the presence of a crossing point was correctly 

indicated.  That is, CSIBTEST had to identify crossing mixed DIF as Crossing and 

unidirectional mixed DIF as Unidirectional. 

Analyses of Monte Carlo Results 

In each condition of the simulation, 100 reference and 100 focal group data sets 

were generated using a different seed on each replication.  Power, Type I, and Type III 

error rates were computed and compared at the condition level for each procedure.  
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Furthermore, the power and Type III error rates associated with the identification of 

different DIF types were assessed by procedure. 

Power and Type III error were calculated based the detection of items known to 

exhibit DIF: items 11 to 15 and 26 to 30.  Type I error rates were calculated based on the 

detection of items known to not exhibit DIF: items 6 to 10 and 21 to 25; the items that 

constituted the DIF-free subset in the constant anchor implementations were not included 

in the Type I error calculation to ensure the comparability of the all-other and constant 

implementation results.  (Under the constant implementation, the anchor items were DIF-

free and were therefore not investigated for DIF in the actual analysis of the test items.)  

Hypotheses regarding the effects of the experimental manipulations upon the power, 

Type I, and Type III error rates of the three DIF detection procedures are presented 

below. 

Hypotheses 

Power and Type I Error.  Numerous studies (e.g., Narayanan & Swaminathan, 

1996) have shown that greater magnitudes of DIF are easier to detect; however, in this 

study, results were expected to vary according to how a procedure was implemented.  

Specifically, it was anticipated that the constant anchor implementation of all three 

procedures would demonstrate lower Type I error rates and higher power than the all-

other implementation when DTF was present and as DIF magnitude increased.  This is 

because using a constant subset of DIF-free anchor items precludes the possibility of 

contamination in the IRT-LR baseline model and in the test scores used as trait estimates 

in the CSIBTEST and LOGREG analyses.  In contrast, the all-other anchor 

implementation uses all items but the one under study in the anchor, including any DIF 
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items present in the test.  This introduces contamination into the baseline model/matching 

subtest, which should adversely affect power and Type I; an effect that should be 

magnified as the amount of DIF increases.  Consequently, it was anticipated that the 

effects of contamination would be most apparent in the large DIF with DTF conditions.  

Additionally, it was expected that all of the study procedures would exhibit greater power 

in the longer test conditions of this study.  This stems from the fact that longer tests were 

expected to provide more accurate and reliable estimates of trait scores for matching 

focal and reference group examinees. 

 

Hypothesis 1: Higher Type I error rates will be observed in the all-other 

implementation conditions than in the constant for all procedures when DTF is 

present and as DIF increases. 

 

Hypothesis 2: Higher power will be observed in the constant anchor 

implementation conditions than in the all-other for all procedures when DTF is 

present and as DIF increases. 

 

Hypothesis 3: Higher power will be observed in the longer test conditions for all 

procedures. 

 

There is a large literature examining the effects of sample size on DIF detection.  

And, research has consistently shown that power to detect DIF with IRT methods is 

higher with large samples (e.g., Rogers & Swaminathan, 1993) due to better item 
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parameter estimation, or in the case of nonparametric methods, perhaps due to smoother, 

more representative (i.e., diverse or complete) distributions of test scores used for trait 

matching.  Higher power was therefore expected here for the IRT-LR, CSIBTEST, and 

LOGREG methods in the large sample conditions than in the small sample conditions. 

 

Hypothesis 4: Higher power will be observed in the larger sample conditions for 

all procedures. 

 

Few studies have examined all of the DIF types included in this investigation. 

However, some expectations can be formed in relation to the power of these procedures 

to detect uniform and nonuniform DIF items.  It was expected that the power of 

CSIBTEST to detect nonuniform DIF would be greater than that of LOGREG (Finch & 

French, 2007).  In addition, studies have suggested that LOGREG’s power to detect 

uniform DIF exceeds its ability to detect nonuniform DIF (e.g., Swaminathan & Rogers, 

1990).  In regard to DIF type, it was expected that functionally uniform DIF would be the 

most difficult to detect for all three procedures.  This is because the effects of DIF 

become manifest only at high trait levels (above +2.0), as shown in panel (c) of Figures 5 

and 6. 

 

Hypothesis 5: Higher power to detect nonuniform DIF will be observed for 

CSIBEST than for LOGREG. 
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Hypothesis 6: Higher power to detect uniform DIF than nonuniform DIF will be 

observed for LOGREG. 

 

Hypothesis 7: Lower power to detect functionally uniform DIF than the other DIF 

prototypes will be observed for all procedures. 

 

Type III Error.  In relation to the effects of the study manipulations upon Type III 

error rates, there has been little to no research on which to base hypotheses.  However, 

because Type III error is dependent on power (i.e., a misclassification can only occur 

after an accurate DIF detection), it is likely that the effects of the manipulated variables 

upon Type III error will mirror those for power.  That is, factors which affect a 

procedure’s power - such as magnitude of DIF, sample size, contamination in the anchor 

set, and test length - ought to also affect its Type III error rate.  This assumption extends 

to DIF type; namely, as expected for power, it was anticipated that all three procedures 

would be ineffectual for classifying functionally uniform DIF. 

 

Hypothesis 8: Lower Type III error rates will be observed in the larger DIF 

magnitude conditions for all procedures. 

 

Hypothesis 9: Lower Type III error rates will be observed in the larger sample 

size conditions for all procedures. 
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Hypothesis 10: Lower Type III error rates will be observed in the constant anchor 

implementation conditions than in the all-other for all procedures when DTF is 

present and as DIF increases. 

 

Hypothesis 11: Lower Type III error rates will be observed in the longer test 

length conditions for all procedures. 

 

Hypothesis 12: Higher Type III error rates for functionally uniform DIF detection 

than the other DIF prototypes will be observed all procedures. 
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CHAPTER 6 

Results 

In keeping with the guidelines suggested by Harwell, Stone, Hsu, and Kirisci 

(1996) for Monte Carlo investigations, results were analyzed using analysis of variance 

(ANOVA) to facilitate interpretation.  Separate analyses were conducted for the different 

study criteria: Type I error, overall power, power to detect the five DIF prototypes, and 

Type III error.  As previously stated, Type I error was defined as the proportion of times 

across the 100 replications a non-DIF item was incorrectly identified as a DIF item, 

power as the proportion of times an item known to exhibit DIF was correctly detected, 

and Type III error as the proportion of times the type of DIF attributed to a correctly 

detected item was different from the type of DIF that was simulated (see Table 5 for each 

procedure’s classification criteria).  Overall power and Type III error rates were 

computed using all of the items known to exhibit DIF.  Power to detect the DIF 

prototypes shown in Figure 4 was computed using the item(s) known to exhibit that given 

DIF type: Items 11 and 26 for uniform, 12 and 27 for nonuniform, 13 and 28 for 

functionally uniform, 14 and 29 for crossing mixed, and 15 and 30 for unidirectional 

mixed. 

To compare the study procedures’ performance (CSIBTEST, IRT-LR, and 

LOGREG), a one-way ANOVA was conducted for each of the study criteria.  

Additionally, a one-way ANOVA was conducted for each procedure comparing their 

ability to detect the different types of DIF.  Hypotheses pertaining to the comparative 
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efficacy of the procedures or differences in their ability to detect the DIF prototypes were 

checked by reviewing the statistical significance findings of the respective analyses and 

via post hoc comparisons. 

To determine the effects of the study manipulations, separate analyses were 

conducted for each procedure.  A full factorial ANOVA model was conducted including 

implementation, DIF magnitude, DTF, impact, sample size, and test length; however, the 

analysis could not be run as the error degrees of freedom were zero.  Instead a model for 

main effects, 2-, 3-, and 4-way interactions was run (error df = 15).  Due to the large 

number of significance test that were performed, a Bonferroni correction was used to 

control the family-wise error rate (resulting significance level was .00089); additionally, 

the eta squared value for each term was reported to illustrate its effect upon performance.  

To ensure significant main effects were not attributable to an interaction, mean cell 

differences were examined.  When a significant interaction was ordinal and did not 

reverse the trend observed for the corresponding main effects, the main effect was 

reported; otherwise, the interaction was reported.  Hypotheses pertaining to the study 

manipulations were investigated by reviewing the statistical significance of their 

respective main effect or interaction terms. 

Note that, when interpreting observed power rates, Type I error rate must be 

considered because an inflated value indicates that the procedure detected DIF regardless 

of its presence, which renders its associated power spurious.  Also, note that the varying 

degrees of freedom across the comparisons are attributable to whether the analysis was 

conducted at the condition level (comparisons of overall power and Type I error rates) or 

at the item level (comparisons of power and Type III error rates for the specific DIF 
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prototypes) and the criteria being analyzed (for power results, the No DIF conditions 

were omitted because there were no DIF items to detect). 

Type I Error Rates 

It was found that the average Type I error rate of the procedures significantly 

differed, F(2,357) = 92.32, p < .05.  Post hoc tests showed that IRT-LR demonstrated 

significantly higher error rates than any of the other procedures (.39).  In turn, it was 

found that CSIBTEST (.13) produced a significantly higher error rate than LOGREG 

(.05).  The effects of the manipulations upon Type I error varied by procedure; Table 6 

presents the ANOVA results by procedure and Table 7 the mean error rates for each 

procedure by manipulation. 

A review of Table 6 shows that a number of factors produced a significant effect.  

Consistent with their recommended implementation in the literature, a lower error rate 

was attained by CSIBTEST and LOGREG in the all-other conditions and IRT-LR in the 

constant.  Furthermore, a number of implementation-related interactions were observed.  

Specially, a significant implementation x test length interaction was found, with 

CSIBTEST and LOGREG showing a marked increase in the 15-item, constant conditions 

and IRT-LR an increase in the 15-item, all-other conditions.   

It was also found that CSIBTEST was adversely affected by the presence of 

contamination within the anchor subtest.  That is, a significant interaction was found for 

implementation x DIF magnitude that revealed greater error rates in the all-other 

conditions as DIF increased whereas the constant conditions demonstrated a similar, 

albeit inflated, error rate across DIF levels.  Relatedly, it was hypothesized that higher 

Type I errors would be observed for the all-other implementations of the three methods in 
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the 0.8 DIF conditions when DTF was present than when DTF was absent (H1).  This 

was investigated by reviewing the significance of the implementation x DIF x DTF 

interaction for each procedure and their corresponding cell means.  This hypothesis was 

only partially supported.  It was found that this factor was significant only for CSIBTEST 

and that, although the highest Type I error rate for the all-other approach occurred in the 

0.8 DIF magnitude conditions when DTF was present, the error rates for the constant 

approach were greater across all levels of DIF and DTF.   

Additionally, it was observed that LOGREG was the only procedure to show an 

effect due to the presence of impact.  A significant implementation x impact x sample 

size interaction was found in which the presence of impact substantially increased the 

error rate of the constant conditions and to a much lesser extent the all-other.  This 

deleterious effect was magnified as sample size increased. 

In summary, IRT-LR clearly performed worse than either nonparametric method, 

with inflated error rates observed in every condition.  Additionally, it was found in the 

all-other conditions that increased DIF led to increased error rates - an effect caused by 

the greater contamination within the baseline model.  Performance improved somewhat 

in the constant anchor conditions, with the highest observed error occurring in the large-

sample and long-test conditions, suggesting that p-values smaller than .05 and effect size 

measures should be strongly considered in conjunction with IRT-LR in practice.  In 

contrast, the LOGREG method provided excellent results with the all-other 

implementation in almost every condition.  However, Type I error rates increased 

concomitantly with sample size for the constant anchor implementation in conditions 

involving impact.  CSIBTEST provided good Type I error control in most of the all-other 
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conditions but error rates worsened when DTF was present and as DIF increased.  This 

suggests that CSIBTEST, like IRT-LR, is susceptible to contamination within the anchor 

set; yet, even with contamination, the all-other CSIBTEST conditions demonstrated 

lower error rates than the constant.  Also, error rates for both nonparametric procedures 

increased substantially when short tests were examined using the constant 

implementation, this indicates that a longer matching subtest is needed for that approach 

to be effective with these procedures. 
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Table 6. 

ANOVA Results for Type I Error Rate by Study Procedures 

 

Source df F ƞ
2 F ƞ

2 F ƞ
2

Source df F ƞ
2 F ƞ

2 F ƞ
2

DIF 1 161.52* .05 15.73 .00 5.78 .00 I * N * DIF 2 18.34* .01 3.38 .00 0.32 .00

DTF 1 21.76* .01 5.10 .00 14.14 .01 I * N * DTF 2 19.60* .01 0.07 .00 1.26 .00

Impact (M) 1 3.19 .00 2.45 .00 239.80* .13 I * N * M 2 1.45 .00 0.15 .00 103.62* .11

Implementation (I) 1 119.04* .04 372.64* .09 20.78* .01 L * DIF * DTF 1 0.01 .00 22.45* .01 0.04 .00

Length (L) 1 279.70* .09 326.27* .08 19.82* .01 L * M * DIF 1 0.01 .00 17.06* .00 0.05 .00

Sample size (N) 2 26.16* .02 58.73* .03 120.84* .13 L * M * DTF 1 1.91 .00 11.06 .00 0.00 .00

DIF * DTF 1 5.54 .00 5.25 .00 3.35 .00 L * N * DIF 2 4.77 .00 2.31 .00 0.54 .00

I * DIF 1 118.76* .04 19.23 .00 2.94 .00 L * N * DTF 2 0.05 .00 1.56 .00 0.62 .00

I * DTF 1 80.75* .03 5.83 .00 8.11 .00 L * N * M 2 0.61 .00 0.30 .00 17.87* .02

I * L 1 1812.91* .57 3074.86* .72 40.65* .02 M * DIF * DTF 1 2.42 .00 2.02 .00 2.44 .00

I * M 1 40.46* .01 0.03 .00 276.06* .15 N * DIF * DTF 2 12.85* .01 0.56 .00 1.14 .00

I * N 2 17.08* .01 22.22* .01 58.11* .06 N * M * DIF 2 3.89 .00 1.74 .00 0.19 .00

L * DIF 1 2.88 .00 12.06 .00 1.64 .00 N * M * DTF 2 2.71 .00 0.82 .00 6.43 .01

L * DTF 1 0.86 .00 11.28 .00 6.23 .00 I * L * DIF * DTF 1 0.16 .00 18.51* .00 1.61 .00

L * M 1 37.02* .01 0.32 .00 46.12* .02 I * L * M * DIF 1 1.18 .00 15.79 .00 0.27 .00

L * N 2 1.50 .00 3.11 .00 18.10* .02 I * L * M * DTF 1 1.58 .00 10.68 .00 3.66 .00

M * DIF 1 0.57 .00 19.44* .00 0.89 .00 I * L * N * DIF 2 0.01 .00 0.52 .00 2.31 .00

M * DTF 1 5.95 .00 9.68 .00 18.67* .01 I * L * N * DTF 2 3.66 .00 2.81 .00 4.22 .00

N * DIF 2 3.81 .00 2.71 .00 2.69 .00 I * L * N * M 2 0.90 .00 0.14 .00 11.34 .01

N * DTF 2 33.95* .02 1.52 .00 1.00 .00 I * M * DIF * DTF 1 1.80 .00 4.92 .00 0.35 .00

N * M 2 1.24 .00 0.07 .00 161.95* .17 I * N * DIF * DTF 2 19.41* .01 0.86 .00 0.58 .00

I * DIF * DTF 1 24.64* .01 7.79 .00 1.05 .00 I * N * M * DIF 2 0.53 .00 0.59 .00 2.17 .00

I * L * DIF 1 0.21 .00 10.47 .00 8.04 .00 I * N * M * DTF 2 4.90 .00 0.51 .00 1.33 .00

I * L * DTF 1 0.07 .00 22.84* .01 8.93 .00 L * M * DIF * DTF 1 0.62 .00 2.46 .00 1.00 .00

I * L * M 1 46.21* .01 0.11 .00 39.45* .02 L * N * DIF * DTF 2 0.36 .00 1.40 .00 0.22 .00

I * L * N 2 1.28 .00 4.68 .00 19.11* .02 L * N * M * DIF 2 1.23 .00 0.67 .00 0.23 .00

I * M * DIF 1 6.02 .00 11.89 .00 5.89 .00 L * N * M * DTF 2 1.09 .00 2.18 .00 0.74 .00

I * M * DTF 1 0.55 .00 15.15 .00 0.18 .00 N * M * DIF * DTF 2 1.78 .00 0.95 .00 0.92 .00

IRTLR LOGREGCSIBTEST IRTLR LOGREG

Note. CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression. DTF indicates that all 

DIF items favor the reference group. No DTF indicates that DIF items may favor either group. * p  < .00089.

CSIBTEST
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Table 7. 

Type I Error Rate by Study Procedures and Variables 

 

  

Procedure Length Sample Impact No DIF DTF No DTF DTF No DTF No DIF DTF No DTF DTF No DTF

CSIBTEST

15 250 -.5 .04 .04 .02 .08 .08 .38 .31 .34 .32 .37

15 250 .0 .06 .02 .01 .04 .06 .26 .29 .30 .31 .29

15 500 -.5 .03 .04 .03 .12 .08 .35 .34 .34 .35 .40

15 500 .0 .05 .06 .03 .15 .06 .30 .29 .27 .26 .31

15 1000 -.5 .04 .06 .05 .17 .06 .39 .38 .34 .31 .34

15 1000 .0 .05 .08 .02 .25 .07 .29 .30 .31 .31 .28

30 250 -.5 .01 .02 .01 .07 .07 .04 .03 .05 .04 .08

30 250 .0 .06 .00 .01 .03 .08 .08 .06 .07 .06 .07

30 500 -.5 .02 .05 .03 .10 .06 .05 .05 .06 .06 .08

30 500 .0 .07 .03 .02 .09 .09 .08 .06 .07 .06 .07

30 1000 -.5 .03 .05 .03 .22 .07 .06 .05 .07 .05 .10

30 1000 .0 .05 .06 .03 .30 .09 .07 .08 .07 .07 .08

IRT-LR

15 250 -.5 .86 .82 .85 .78 .81 .11 .12 .10 .11 .10

15 250 .0 .87 .64 .86 .81 .82 .11 .11 .09 .09 .08

15 500 -.5 .97 .92 .97 .88 .90 .14 .11 .14 .10 .10

15 500 .0 .97 .69 .96 .91 .94 .11 .11 .10 .10 .10

15 1000 -.5 1.00 .99 1.00 .95 .78 .13 .16 .16 .18 .15

15 1000 .0 .99 .76 1.00 .97 1.00 .14 .15 .13 .16 .16

30 250 -.5 .23 .29 .22 .39 .35 .13 .14 .17 .15 .14

30 250 .0 .21 .25 .22 .35 .34 .14 .12 .13 .12 .14

30 500 -.5 .25 .36 .32 .42 .44 .16 .16 .17 .16 .20

30 500 .0 .21 .36 .29 .40 .42 .17 .16 .17 .16 .17

30 1000 -.5 .31 .46 .46 .46 .49 .21 .26 .25 .22 .24

30 1000 .0 .28 .45 .43 .46 .48 .26 .23 .20 .22 .22

LOGREG

15 250 -.5 .01 .00 .02 .02 .01 .02 .03 .05 .02 .02

15 250 .0 .00 .01 .00 .00 .01 .00 .00 .00 .01 .00

15 500 -.5 .03 .02 .04 .01 .01 .12 .12 .14 .12 .19

15 500 .0 .01 .01 .01 .05 .01 .01 .01 .01 .01 .01

15 1000 -.5 .11 .02 .11 .01 .06 .37 .38 .36 .41 .41

15 1000 .0 .01 .02 .02 .08 .02 .02 .02 .01 .02 .01

30 250 -.5 .01 .00 .01 .01 .01 .01 .01 .01 .00 .02

30 250 .0 .00 .00 .01 .01 .01 .00 .00 .04 .00 .01

30 500 -.5 .03 .03 .02 .02 .06 .06 .04 .11 .04 .12

30 500 .0 .00 .01 .03 .07 .05 .01 .01 .04 .02 .03

30 1000 -.5 .04 .04 .05 .07 .10 .15 .14 .28 .17 .25

30 1000 .0 .00 .01 .03 .13 .06 .01 .01 .03 .01 .02

All-other implementation Constant implementation

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = 

logistic regression.  DTF indicates that all DIF items favor the reference group.  No DTF inidicates that DIF items may favor either 

group.

.4 DIF .8 DIF .4 DIF .8 DIF
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Overall Power 

A significant difference was not found among the procedures for overall power, 

F(2,285) = 3.19, p > .05, and likewise for the post hoc tests.  Nevertheless, though not 

statically significant, it was observed that LOGREG (.71) had higher power than 

CSIBTEST (.64).  The average power rate for IRT-LR was .70 but is difficult to interpret 

due its inflated Type I error rate. 

Table 8 presents the ANOVA results by procedure and Table 9 mean power for 

each procedure by manipulation.  Main effects for sample size and DIF magnitude were 

found, with greater observed power as either increased.  For sample size, this finding 

supports Hypothesis 4, which stated that greater power would be observed as sample size 

increased.  It was also predicted that observed power would increase with test length 

(H3).  To test this hypothesis, the main effect of test length was examined.  Despite a 

significant finding, the observed cell differences demonstrated minimal mean differences.  

For IRT-LR and LOGREG the observed differences were negligible.  For CSIBTEST, 

greater power was observed in the 15-item conditions but this was due to an inflated 

Type I error rate. 

Many significant interactions were found that included the implementation 

manipulation.  An interaction of implementation x length was found for all procedures; 

but, for CSIBTEST and IRT-LR, it was attributable to elevated Type I error rates and for 

LOGREG the cell differences were minor.  A significant implementation x DIF 

interaction was also found across procedures.  For IRT-LR, an examination of the cell 

means revealed that this finding was attributable to the main effect of DIF and the 

inflated Type I error rates found in the all-other conditions.  For CSIBTEST and 
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LOGREG, it was observed that, although greater power was achieved in the constant 

conditions when DIF was 0.4 (due to elevated Type I error rates), the all-other conditions 

exhibited greater power than the constant when DIF was 0.8.  Moreover, an effect for 

implementation x DTF was detected for all procedures.  Better power was observed for 

the constant conditions with maximum DTF; on the contrary, the all-other showed better 

performance in the minimal DTF conditions. 

Relatedly, Hypothesis 2 posited that, due to the greater contamination present in 

the anchor set as DIF and DTF increased, greater power would be observed for the 

constant anchor implementation relative to the all-other.  To test this, the interaction of 

implementation x DIF x DTF was investigated; it was found to be significant for the 

nonparametric procedures, although a review of cell means showed that the hypothesis 

was only partially supported.  For CSIBTEST and LOGREG, it was found that the all-

other conditions showed better power in the minimal DTF condition with 0.4 DIF and a 

minor benefit in 0.8, whereas DTF had a beneficial effect in the constant conditions.  

However, contrary to expectation, it was found for both that the all-other approach 

outperformed the constant. 

When observed error rates are considered, it appears that LOGREG exhibited the 

greatest overall power regardless of implementation.  CSIBTEST and IRT-LR performed 

similarly though both demonstrated Type I error rates above .05.  Again all procedures 

performed better with the approach that is suggested in the literature (all-other for the 

nonparametric procedures and constant for IRT-LR).  Also, it is noteworthy that the 

power of the nonparametric methods was not affected by impact.  The presence of DTF 

had mixed effects.  When the all-other approach was used, the minimal DTF conditions 
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yielded better detection, which is consistent with notions concerning the effects of 

contamination in the anchor item subset; but the reverse was true in the constant 

implementation conditions.  For the constant conditions, this is attributable to the fact that 

in order to minimize DTF, both groups were allowed to benefit from the presence of DIF 

whereas, to maximize DTF, only the reference group benefitted.  These results are 

consistent with past research; for example, Wang and Yeh (2003) found greater power for 

the constant approach to IRT-LR when DIF favored one group (relative to equivalent 

conditions in which DIF favored both groups).  Regardless, results indicated that despite 

contamination within the anchor subtest the all-other approaches generally outperformed 

the constant in terms of power and Type I error. 
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Table 8. 

ANOVA Results for Overall Power by Study Procedures 

 

Source df F ƞ
2 F ƞ

2 F ƞ
2

Source df F ƞ
2 F ƞ

2 F ƞ
2

DIF 1 2862.86* .49 3615.46* .42 4256.47* .47 I * N * DIF 2 7.55 .00 4.40 .00 7.34 .00

DTF 1 25.75* .00 69.23* .01 194.34* .02 I * N * DTF 2 0.67 .00 2.12 .00 5.76 .00

Impact (M) 1 9.90 .00 9.03 .00 61.03* .01 I * N * M 2 0.22 .00 2.79 .00 0.38 .00

Implementation (I) 1 39.69* .01 205.06* .02 34.31* .00 L * DIF * DTF 1 0.28 .00 6.68 .00 162.13* .02

Length (L) 1 156.79* .03 37.96* .00 32.60* .00 L * M * DIF 1 0.21 .00 0.24 .00 8.17 .00

Sample size (N) 2 749.25* .26 1057.43* .25 1165.50* .26 L * M * DTF 1 0.11 .00 0.45 .00 6.95 .00

DIF * DTF 1 11.48 .00 1.65 .00 55.88* .01 L * N * DIF 2 0.57 .00 3.47 .00 1.74 .00

I * DIF 1 183.87* .03 1167.31* .14 202.90* .02 L * N * DTF 2 0.76 .00 1.11 .00 5.36 .00

I * DTF 1 76.04* .01 70.37* .01 406.06* .04 L * N * M 2 2.12 .00 3.42 .00 0.12 .00

I * L 1 413.55* .07 562.19* .07 57.74* .01 M * DIF * DTF 1 2.09 .00 0.04 .00 69.11* .01

I * M 1 118.08* .02 0.42 .00 21.54* .00 N * DIF * DTF 2 0.86 .00 5.93 .00 5.89 .00

I * N 2 57.72* .02 17.88* .00 1.13 .00 N * M * DIF 2 0.01 .00 16.03* .00 3.02 .00

L * DIF 1 90.11* .02 53.64* .01 92.38* .01 N * M * DTF 2 0.06 .00 0.56 .00 3.17 .00

L * DTF 1 0.66 .00 14.94 .00 39.49* .00 I * L * DIF * DTF 1 0.34 .00 3.11 .00 85.86* .01

L * M 1 3.54 .00 2.84 .00 14.84 .00 I * L * M * DIF 1 0.71 .00 2.49 .00 0.05 .00

L * N 2 6.33 .00 24.02* .01 4.08 .00 I * L * M * DTF 1 3.87 .00 0.89 .00 2.84 .00

M * DIF 1 0.04 .00 1.60 .00 90.18* .01 I * L * N * DIF 2 2.15 .00 5.05 .00 0.01 .00

M * DTF 1 1.50 .00 0.25 .00 168.25* .02 I * L * N * DTF 2 0.03 .00 1.50 .00 6.59 .00

N * DIF 2 9.44 .00 63.89* .01 121.17* .03 I * L * N * M 2 1.81 .00 1.90 .00 3.57 .00

N * DTF 2 3.89 .00 0.17 .00 3.34 .00 I * M * DIF * DTF 1 7.38 .00 0.34 .00 8.46 .00

N * M 2 2.81 .00 1.07 .00 1.89 .00 I * N * DIF * DTF 2 0.50 .00 1.59 .00 16.28* .00

I * DIF * DTF 1 25.99* .00 7.67 .00 20.56* .00 I * N * M * DIF 2 1.87 .00 2.03 .00 1.72 .00

I * L * DIF 1 19.18* .00 237.00* .03 71.59* .01 I * N * M * DTF 2 0.28 .00 0.60 .00 2.09 .00

I * L * DTF 1 0.31 .00 0.47 .00 76.54* .01 L * M * DIF * DTF 1 0.26 .00 0.03 .00 3.51 .00

I * L * M 1 13.46 .00 0.71 .00 1.71 .00 L * N * DIF * DTF 2 0.39 .00 1.56 .00 2.88 .00

I * L * N 2 4.94 .00 13.13* .00 3.53 .00 L * N * M * DIF 2 0.54 .00 1.14 .00 1.26 .00

I * M * DIF 1 27.36* .00 2.65 .00 5.75 .00 L * N * M * DTF 2 0.50 .00 0.26 .00 1.31 .00

I * M * DTF 1 7.64 .00 0.80 .00 17.62 .00 N * M * DIF * DTF 2 1.29 .00 0.86 .00 1.86 .00

CSIBTEST IRTLR LOGREG

Note. CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression. DTF indicates that all 

DIF items favor the reference group. No DTF indicates that DIF items may favor either group. * p  < .00089.

CSIBTEST IRTLR LOGREG
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Table 9. 

Overall Power by Study Variables 

 

  

Procedure Length Sample Impact DTF No DTF DTF No DTF DTF No DTF DTF No DTF

CSIBTEST

15 250 -.5 .19 .31 .54 .64 .60 .61 .76 .71

15 250 .0 .30 .45 .69 .67 .51 .48 .68 .70

15 500 -.5 .33 .47 .77 .85 .74 .71 .83 .80

15 500 .0 .45 .57 .86 .83 .57 .62 .77 .77

15 1000 -.5 .53 .65 .89 .96 .80 .71 .85 .83

15 1000 .0 .67 .73 .97 .94 .67 .67 .81 .84

30 250 -.5 .18 .31 .63 .74 .27 .24 .56 .54

30 250 .0 .26 .45 .74 .75 .28 .27 .58 .58

30 500 -.5 .38 .50 .84 .92 .43 .40 .68 .69

30 500 .0 .46 .56 .94 .92 .42 .39 .69 .68

30 1000 -.5 .59 .68 .99 .99 .56 .54 .80 .76

30 1000 .0 .68 .78 1.00 .98 .52 .38 .79 .79

IRT-LR

15 250 -.5 .54 .65 .67 .68 .32 .26 .71 .64

15 250 .0 .56 .68 .76 .68 .26 .20 .79 .73

15 500 -.5 .76 .83 .82 .75 .45 .40 .88 .83

15 500 .0 .82 .86 .84 .83 .44 .39 .92 .88

15 1000 -.5 .94 .94 .91 .95 .58 .50 .99 .94

15 1000 .0 .97 .92 .89 .87 .63 .57 .98 .94

30 250 -.5 .50 .47 .72 .71 .42 .34 .84 .73

30 250 .0 .44 .45 .74 .72 .37 .29 .86 .75

30 500 -.5 .58 .56 .78 .79 .57 .43 .95 .86

30 500 .0 .57 .57 .80 .78 .60 .46 .96 .88

30 1000 -.5 .66 .64 .82 .81 .72 .64 1.00 .94

30 1000 .0 .70 .66 .82 .80 .78 .68 1.00 .96

LOGREG

15 250 -.5 .41 .28 .79 .80 .57 .35 .88 .72

15 250 .0 .24 .38 .78 .87 .29 .34 .74 .75

15 500 -.5 .56 .53 .94 .97 .83 .50 1.00 .89

15 500 .0 .44 .47 .98 .98 .44 .44 .96 .95

15 1000 -.5 .80 .74 1.00 .99 .99 .59 1.00 .99

15 1000 .0 .59 .74 1.00 1.00 .65 .67 1.00 1.00

30 250 -.5 .35 .35 .82 .79 .51 .29 .89 .31

30 250 .0 .24 .38 .80 .89 .35 .38 .88 .36

30 500 -.5 .52 .56 .96 .95 .71 .52 .99 .53

30 500 .0 .43 .58 .96 .98 .47 .54 .98 .54

30 1000 -.5 .73 .75 1.00 1.00 .93 .76 1.00 .74

30 1000 .0 .70 .80 1.00 1.00 .73 .75 1.00 .74

All-other implementation Constant implementation

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, 

and LOGREG = logistic regression.  DTF indicates that all DIF items favor the reference group.  No DTF 

inidicates that DIF items may favor either group.

.4 DIF .8 DIF .4 DIF .8 DIF
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Power to Detect Uniform DIF 

It was found that the power of the procedures to detect uniform DIF significantly 

differed, F(2,285) = 7.37, p < .05.  Specifically, post hoc analysis revealed that LOGREG 

(.87) and CSIBTEST (.87) performed the same.  In relation to IRT-LR (.77), both were 

found to be significantly more effective. 

Table 10 presents the ANOVA results by procedure and Table 11 mean power for 

each procedure by manipulation.  Consistent with overall power, main effects for sample 

size and DIF magnitude were found although the effects were weaker for LOGREG than 

CSIBTEST and IRT-LR.  A main effect for DTF was found for IRT-LR and LOGREG in 

which the maximum DTF conditions showed better power.  Relatedly, a significant 

implementation x DTF interaction was found for all procedures, the effect of which 

differed by procedure.  For CSIBTEST, the all-other conditions benefitted from minimal 

DTF whereas the constant benefitted from maximum DTF.  IRT-LR and LOGREG 

demonstrated little difference in the all-other conditions but the constant showed an 

increase in power when DTF was present.   

For length, a significant main effect was found for LOGREG and IRT-LR but the 

associated cell differences were minor.  However, a significant implementation x length 

interaction was observed for all procedures.  For CSIBTEST and IRT-LR it was caused 

by the inflated Type I error rates observed in the 15-item conditions, and for LOGREG 

the observed cell differences were trivial.   

LOGREG again showed a significant effect related to impact.  Specifically, an 

effect for impact x DIF x DTF was found in which power to detect uniform DIF dropped 

when either impact or DTF occurred (but not when they co-occurred).  Further 
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examination revealed a relation to implementation.  That is, in the minimal DTF 

conditions, the constant approach showed lower power when impact was present.  For the 

all-other implementation, this was the case in the 0.4 DIF conditions. 

The nonparametric procedures exhibited moderate to high power for the detection 

of uniform DIF.  In regard to implementation, the all-other approach performed better 

than the constant for LOGREG, though it should be noted that it was the only procedure 

whose effectiveness was affected by impact.  Both implementations of CSIBTEST 

performed comparably; however, results for the constant conditions were less consistent 

and had greater associated Type I error rates.  For IRT-LR, despite its high error rates, 

power for both implementations was lower than what was found for the other procedures.  

As was seen for overall power, the effect of DTF varied, with it producing a negative 

effect upon power in the all-other conditions but a positive one in the constant conditions.  

As mentioned previously, this is attributable to the change in the direction of DIF that 

occurred in the minimal DTF conditions. 
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Table 10. 

ANOVA Results for Power to Detect Uniform DIF by Study Procedures 

Source df F ƞ
2 F ƞ

2 F ƞ
2

Source df F ƞ
2 F ƞ

2 F ƞ
2

DIF 1 702.71* .32 996.75* .35 53.95* .09 I * N * DIF 2 3.81 .00 3.55 .00 4.49 .02

DTF 1 12.96 .01 250.35* .09 50.56* .09 I * N * DTF 2 13.62* .01 15.58* .01 2.29 .01

Impact (M) 1 28.17* .01 6.28 .00 38.47* .06 I * N * M 2 10.32 .01 1.54 .00 0.69 .00

Implementation (I) 1 2.32 .00 0.47 .00 17.56 .03 L * DIF * DTF 1 0.11 .00 10.52 .00 10.01 .02

Length (L) 1 18.10 .01 47.66* .02 0.03 .00 L * M * DIF 1 0.80 .00 0.54 .00 9.71 .02

Sample size (N) 2 296.89* .27 326.04* .23 30.30* .10 L * M * DTF 1 0.53 .00 4.78 .00 0.83 .00

DIF * DTF 1 15.09 .01 0.15 .00 7.16 .01 L * N * DIF 2 5.14 .00 5.34 .00 0.37 .00

I * DIF 1 0.25 .00 6.78 .00 0.06 .00 L * N * DTF 2 1.94 .00 4.14 .00 2.22 .01

I * DTF 1 137.14* .06 144.34* .05 41.18* .07 L * N * M 2 3.07 .00 2.57 .00 0.45 .00

I * L 1 35.55* .02 87.17* .03 1.95 .00 M * DIF * DTF 1 0.86 .00 0.74 .00 25.30* .04

I * M 1 53.70* .02 1.96 .00 15.11 .03 N * DIF * DTF 2 7.79 .01 6.03 .00 0.13 .00

I * N 2 3.20 .00 10.89 .01 0.33 .00 N * M * DIF 2 2.26 .00 7.69 .01 0.06 .00

L * DIF 1 26.09* .01 34.48* .01 14.51 .02 N * M * DTF 2 0.61 .00 0.48 .00 7.01 .02

L * DTF 1 0.17 .00 17.04 .01 0.64 .00 I * L * DIF * DTF 1 0.31 .00 22.95* .01 5.36 .01

L * M 1 0.53 .00 0.70 .00 0.05 .00 I * L * M * DIF 1 0.15 .00 0.22 .00 2.38 .00

L * N 2 3.05 .00 19.38* .01 0.75 .00 I * L * M * DTF 1 2.87 .00 6.28 .00 1.15 .00

M * DIF 1 8.84 .00 0.70 .00 8.08 .01 I * L * N * DIF 2 2.09 .00 2.63 .00 0.01 .00

M * DTF 1 0.03 .00 1.33 .00 70.72* .12 I * L * N * DTF 2 0.51 .00 5.63 .00 2.65 .01

N * DIF 2 113.02* .10 81.26* .06 13.53* .05 I * L * N * M 2 0.81 .00 2.02 .00 2.19 .01

N * DTF 2 8.58 .01 1.32 .00 2.92 .01 I * M * DIF * DTF 1 0.49 .00 0.09 .00 0.49 .00

N * M 2 13.36* .01 3.90 .00 1.25 .00 I * N * DIF * DTF 2 1.00 .00 3.28 .00 0.13 .00

I * DIF * DTF 1 63.27* .03 46.32* .02 3.85 .01 I * N * M * DIF 2 3.86 .00 0.73 .00 2.39 .01

I * L * DIF 1 30.32* .01 50.77* .02 6.60 .01 I * N * M * DTF 2 0.22 .00 0.89 .00 0.22 .00

I * L * DTF 1 0.11 .00 39.87* .01 2.79 .00 L * M * DIF * DTF 1 0.11 .00 0.27 .00 14.58 .02

I * L * M 1 0.02 .00 0.51 .00 1.87 .00 L * N * DIF * DTF 2 1.23 .00 6.20 .00 0.17 .00

I * L * N 2 2.06 .00 5.64 .00 2.20 .01 L * N * M * DIF 2 2.84 .00 0.69 .00 0.20 .00

I * M * DIF 1 34.20* .02 5.68 .00 0.26 .00 L * N * M * DTF 2 0.17 .00 0.39 .00 0.20 .00

I * M * DTF 1 4.74 .00 10.84 .00 16.51 .03 N * M * DIF * DTF 2 1.59 .00 4.68 .00 2.71 .01

Note. CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression. DTF indicates that all 

DIF items favor the reference group. No DTF indicates that DIF items may favor either group. * p  < .00089.

CSIBTEST IRTLR LOGREGCSIBTEST IRTLR LOGREG
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Table 11. 

Power to Detect Uniform DIF by Study Variables 

 

  

Procedure Length Sample Impact DTF No DTF DTF No DTF DTF No DTF DTF No DTF

CSIBTEST

15 250 -.5 .33 .58 .82 .92 .82 .67 .96 .86

15 250 .0 .57 .87 .94 .96 .71 .63 .94 .91

15 500 -.5 .57 .84 .99 1.00 .96 .84 1.00 .96

15 500 .0 .79 .95 1.00 1.00 .87 .88 1.00 .96

15 1000 -.5 .85 .99 1.00 1.00 1.00 .84 1.00 1.00

15 1000 .0 .97 1.00 1.00 1.00 .96 .96 1.00 .99

30 250 -.5 .23 .54 .83 .97 .55 .45 .94 .88

30 250 .0 .50 .94 .96 1.00 .52 .47 .96 .91

30 500 -.5 .70 .93 1.00 1.00 .78 .71 .99 .98

30 500 .0 .83 .98 1.00 1.00 .72 .69 1.00 .98

30 1000 -.5 .92 1.00 1.00 1.00 .98 .87 1.00 1.00

30 1000 .0 .97 1.00 1.00 1.00 .91 .70 1.00 1.00

IRT-LR

15 250 -.5 .23 .46 .73 .73 .52 .17 .94 .72

15 250 .0 .19 .48 .92 .58 .40 .19 .99 .83

15 500 -.5 .40 .58 .91 .68 .65 .51 1.00 .95

15 500 .0 .66 .63 1.00 .78 .72 .51 1.00 .99

15 1000 -.5 .75 .73 1.00 1.00 .97 .72 1.00 1.00

15 1000 .0 .92 .70 1.00 .75 .98 .81 1.00 1.00

30 250 -.5 .63 .61 .95 .95 .76 .31 .90 .58

30 250 .0 .59 .59 .99 .99 .62 .29 .90 .55

30 500 -.5 .63 .60 1.00 1.00 .92 .43 .98 .67

30 500 .0 .71 .67 1.00 1.00 .94 .44 .98 .69

30 1000 -.5 .78 .74 1.00 1.00 1.00 .76 1.00 .78

30 1000 .0 .89 .85 1.00 1.00 1.00 .78 1.00 .85

LOGREG

15 250 -.5 .71 .05 1.00 1.00 1.00 .02 1.00 .88

15 250 .0 .44 .99 1.00 1.00 .60 .75 1.00 1.00

15 500 -.5 .98 .64 1.00 1.00 1.00 .02 1.00 1.00

15 500 .0 .94 1.00 1.00 1.00 .97 .98 1.00 1.00

15 1000 -.5 1.00 .99 1.00 1.00 1.00 .09 1.00 1.00

15 1000 .0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

30 250 -.5 .71 .48 1.00 1.00 .99 .03 1.00 .04

30 250 .0 .58 .80 1.00 1.00 .83 .71 1.00 .76

30 500 -.5 .98 .93 1.00 1.00 1.00 .38 1.00 .32

30 500 .0 .90 1.00 1.00 1.00 .98 .95 1.00 .97

30 1000 -.5 1.00 1.00 1.00 1.00 1.00 .80 1.00 .77

30 1000 .0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.4 DIF .8 DIF.8 DIF .4 DIF

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, 

and LOGREG = logistic regression.  DTF indicates that all DIF items favor the reference group.  No DTF 

inidicates that DIF items may favor either group.

All-other implementation Constant implementation
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Power to Detect Nonuniform DIF 

Analysis revealed that the procedures significantly differed in their ability to 

detect nonuniform DIF, F(2,285) = 22.39, p < .05.  It was found that IRT-LR (.69) 

performed better than the other procedures, though its elevated Type I error rate should 

be recalled.  Additionally, LOGREG (.51) was found to have better detection than 

CSIBTEST (.39), which counters the expectation set forth in Hypothesis 5 that 

CSIBTEST would show greater power to detect nonuniform DIF than LOGREG. 

Also, it was predicted that LOGREG would exhibit greater power for uniform DIF 

detection than nonuniform (H6).  Support was found, F(4,475) = 48.06, p < .05, and post 

hoc tests showed that LOGREG’s power to detect uniform DIF (.69) was greater than its 

power to detect nonuniform (.61). 

Table 12 presents the ANOVA results by procedure and Table 13 the mean power 

for each procedure by manipulation.  Again, all procedures benefitted from greater 

sample size and DIF magnitude.  A significant implementation x DIF interaction was 

found for all procedures in which the all-other conditions of CSIBTEST and LOGREG 

showed poor power in the 0.4 DIF conditions but good power in the 0.8 conditions.  

Relative to the all-other, the constant approach produced higher power in the 0.4 DIF 

conditions and lower in the 0.8.  Results for the IRT-LR all-other conditions were due to 

its inflated Type I error rate. 

A comparison with the results for uniform DIF confirms the findings of many 

previous studies indicating that nonuniform DIF is more difficult to detect.  In general, 

power to detect nonuniform DIF was lower for CSIBTEST and LOGREG, and similar for 

IRT-LR.  Greater power was observed for LOGREG than CSIBTEST; this is surprising 
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given that it was specifically designed to perform better than its predecessor SIBTEST 

when IRFs cross.  Unlike findings for uniform DIF, neither impact nor DTF had any 

obvious effects.  For the other manipulations, power was substantially higher in the large 

DIF conditions and similar across implementations when taking Type I errors into 

consideration.  In sum, it appears that when nonuniform DIF is suspected any of the study 

procedures is a viable option, although the selected method should be implemented with 

its recommended approach (all-other for nonparametric methods and constant for IRT-

LR) for a more controlled Type I error rate.  Additionally, it appears that the efficacy of 

the procedures to detect nonuniform DIF was unaffected by many of the study 

manipulations. 
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Table 12. 

ANOVA Results for Power to Detect Nonuniform DIF by Study Procedures 

 

Source df F ƞ
2 F ƞ

2 F ƞ
2

Source df F ƞ
2 F ƞ

2 F ƞ
2

DIF 1 1517.68* .43 1027.79* .29 989.89* .54 I * N * DIF 2 5.60 .00 40.35* .02 1.84 .00

DTF 1 0.08 .00 7.21 .00 16.12 .01 I * N * DTF 2 1.99 .00 0.82 .00 0.17 .00

Impact (M) 1 10.43 .00 34.86* .01 20.69* .01 I * N * M 2 0.54 .00 3.97 .00 2.50 .00

Implementation (I) 1 380.79* .11 54.76* .02 22.37* .01 L * DIF * DTF 1 0.11 .00 0.12 .00 28.07* .02

Length (L) 1 29.21* .01 54.76* .02 0.17 .00 L * M * DIF 1 0.22 .00 0.97 .00 5.34 .00

Sample size (N) 2 227.00* .13 324.43* .19 150.19* .16 L * M * DTF 1 1.54 .00 2.20 .00 0.02 .00

DIF * DTF 1 1.60 .00 0.42 .00 28.55* .02 L * N * DIF 2 3.59 .00 9.25 .01 4.80 .01

I * DIF 1 547.46* .15 1020.54* .29 65.65* .04 L * N * DTF 2 0.59 .00 0.72 .00 0.42 .00

I * DTF 1 3.77 .00 7.46 .00 19.77* .01 L * N * M 2 1.81 .00 2.49 .00 0.64 .00

I * L 1 37.58* .01 22.55* .01 19.47* .01 M * DIF * DTF 1 0.40 .00 2.41 .00 0.38 .00

I * M 1 7.24 .00 10.00 .00 55.24* .03 N * DIF * DTF 2 0.68 .00 2.32 .00 0.61 .00

I * N 2 62.23* .03 2.07 .00 6.40 .01 N * M * DIF 2 0.79 .00 8.45 .00 3.69 .00

L * DIF 1 177.25* .05 75.16* .02 5.24 .00 N * M * DTF 2 0.28 .00 2.50 .00 0.72 .00

L * DTF 1 1.48 .00 0.61 .00 16.85 .01 I * L * DIF * DTF 1 0.34 .00 2.20 .00 25.02* .01

L * M 1 2.38 .00 3.58 .00 14.52 .01 I * L * M * DIF 1 0.12 .00 2.41 .00 0.01 .00

L * N 2 17.60* .01 10.26 .01 3.41 .00 I * L * M * DTF 1 1.48 .00 3.25 .00 1.60 .00

M * DIF 1 4.24 .00 1.82 .00 7.46 .00 I * L * N * DIF 2 15.68* .01 10.49 .01 0.05 .00

M * DTF 1 5.81 .00 3.50 .00 0.74 .00 I * L * N * DTF 2 0.11 .00 1.12 .00 0.86 .00

N * DIF 2 20.34* .01 8.04 .00 11.94 .01 I * L * N * M 2 0.24 .00 0.25 .00 1.55 .00

N * DTF 2 0.23 .00 0.76 .00 0.58 .00 I * M * DIF * DTF 1 4.43 .00 1.31 .00 1.46 .00

N * M 2 1.35 .00 0.14 .00 5.95 .01 I * N * DIF * DTF 2 0.95 .00 1.26 .00 1.07 .00

I * DIF * DTF 1 0.67 .00 1.76 .00 16.76 .01 I * N * M * DIF 2 5.16 .00 8.42 .00 14.29* .02

I * L * DIF 1 35.88* .01 204.21* .06 8.03 .00 I * N * M * DTF 2 1.47 .00 1.27 .00 0.51 .00

I * L * DTF 1 2.61 .00 1.42 .00 12.19 .01 L * M * DIF * DTF 1 0.00 .00 3.25 .00 0.01 .00

I * L * M 1 6.50 .00 1.36 .00 3.53 .00 L * N * DIF * DTF 2 1.47 .00 1.87 .00 0.93 .00

I * L * N 2 9.46 .01 17.44* .01 0.52 .00 L * N * M * DIF 2 0.36 .00 0.68 .00 8.43 .01

I * M * DIF 1 1.91 .00 2.41 .00 2.77 .00 L * N * M * DTF 2 1.89 .00 0.14 .00 0.86 .00

I * M * DTF 1 5.05 .00 3.67 .00 0.75 .00 N * M * DIF * DTF 2 2.73 .00 0.16 .00 0.43 .00

CSIBTEST IRTLR LOGREG

Note. CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression. DTF indicates that all 

DIF items favor the reference group. No DTF indicates that DIF items may favor either group. * p  < .00089.

CSIBTEST IRTLR LOGREG
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Table 13. 

Power to Detect Nonuniform DIF by Study Variables 

 

  

Procedure Length Sample Impact DTF No DTF DTF No DTF DTF No DTF DTF No DTF

CSIBTEST

15 250 -.5 .10 .06 .40 .42 .23 .42 .32 .32

15 250 .0 .08 .04 .56 .38 .33 .25 .25 .31

15 500 -.5 .12 .14 .63 .64 .33 .39 .29 .30

15 500 .0 .15 .18 .77 .67 .18 .35 .25 .26

15 1000 -.5 .19 .27 .76 .94 .31 .39 .28 .22

15 1000 .0 .46 .31 .93 .88 .31 .32 .26 .35

30 250 -.5 .06 .06 .57 .52 .09 .09 .20 .25

30 250 .0 .07 .07 .69 .61 .09 .13 .32 .32

30 500 -.5 .15 .17 .86 .92 .14 .14 .44 .43

30 500 .0 .22 .15 .96 .93 .15 .15 .49 .45

30 1000 -.5 .35 .38 1.00 1.00 .17 .22 .63 .52

30 1000 .0 .45 .44 .99 .99 .21 .14 .67 .70

IRT-LR

15 250 -.5 .60 .53 .34 .29 .18 .10 .65 .73

15 250 .0 .74 .62 .47 .34 .16 .15 .89 .89

15 500 -.5 .77 .88 .62 .52 .25 .24 .94 .94

15 500 .0 .84 .90 .76 .59 .28 .31 1.00 1.00

15 1000 -.5 .96 .99 .72 1.00 .33 .30 1.00 1.00

15 1000 .0 .98 .99 .93 .70 .54 .52 1.00 1.00

30 250 -.5 .61 .54 .76 .66 .21 .21 .91 .90

30 250 .0 .57 .57 .75 .65 .22 .21 .97 .99

30 500 -.5 .66 .58 .87 .82 .32 .34 1.00 1.00

30 500 .0 .63 .60 .91 .82 .44 .47 1.00 1.00

30 1000 -.5 .74 .69 .98 .96 .58 .63 1.00 1.00

30 1000 .0 .78 .61 1.00 .95 .87 .84 1.00 1.00

LOGREG

15 250 -.5 .02 .01 .52 .63 .03 .06 .68 .61

15 250 .0 .01 .02 .85 .68 .00 .01 .18 .28

15 500 -.5 .08 .08 .87 .99 .49 .43 .98 .97

15 500 .0 .10 .10 1.00 .96 .04 .03 .81 .78

15 1000 -.5 .34 .56 1.00 .99 .98 .84 1.00 1.00

15 1000 .0 .29 .29 1.00 1.00 .05 .03 .98 .99

30 250 -.5 .05 .04 .88 .71 .02 .04 .75 .03

30 250 .0 .01 .06 .97 .97 .01 .09 .81 .03

30 500 -.5 .11 .10 1.00 .98 .21 .29 .98 .32

30 500 .0 .13 .23 1.00 1.00 .07 .20 .97 .14

30 1000 -.5 .22 .47 1.00 1.00 .74 .71 1.00 .69

30 1000 .0 .74 .51 1.00 1.00 .29 .42 1.00 .37

.4 DIF

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, 

and LOGREG = logistic regression.  DTF indicates that all DIF items favor the reference group.  No DTF 

inidicates that DIF items may favor either group.

.8 DIF.4 DIF .8 DIF

Constant implementationAll-other implementation
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Power to Detect Unidirectional Mixed DIF 

Analysis revealed that the procedures significantly differed in their ability to 

detect unidirectional mixed DIF, F(5,285) = 33.57, p < .05.  It was found that IRT-LR 

(.70) demonstrated lower average power than the other procedures.  No significant 

difference was found between LOGREG (.98) and CSIBTEST (.91).  

Table 14 presents the ANOVA results by procedure and Table 15 the mean power 

for each procedure by manipulation.  Like previous findings, main effects for magnitude 

of DIF and sample size were found.  A significant implementation x test length 

interaction was found for CSIBTEST and IRT-LR.  For CSIBTEST, it was found that the 

all-other conditions produced similar power across test lengths; however, in the constant 

conditions, power declined in the 30-item conditions (this was attributable to the elevated 

Type I error rate observed in the 15-item, constant conditions).  For IRT-LR, a sharp drop 

in power was seen in the 30-item conditions of the all-other approach relative to the 15-

item conditions and to the constant implementation conditions.  Significant effects related 

to impact were observed for LOGREG but these could be attributed to the elevated Type 

I error rates found when impact was present. 

It was again found that CSIBTEST and LOGREG performed comparably to each 

other but better than IRT-LR.  In fact, the nonparametric procedures were very effective 

for the detection of unidirectional mixed DIF with average detection rates near 1.00.  

Findings suggest that the all-other implementations of LOGREG and CSIBTEST provide 

good to excellent power while maintaining average Type I error rates near or below the 

nominal level of .05.  The constant IRT-LR implementation also provided good power, 

but the results must be interpreted cautiously in light of its elevated error rates.  Despite 
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concerns about contamination of the anchor subtest, the DTF manipulation did not have 

an effect upon detection for the all-other implementations.  Interestingly, all of the 

procedures demonstrated excellent detection of unidirectional mixed DIF, though the 

amount of DIF present in these items was equivalent to the amount in the items known to 

possess uniform and nonuniform DIF (0.4 and 0.8). 
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Table 14. 

ANOVA Results for Power to Detect Unidirectional Mixed DIF by Study Procedures 

Source df F ƞ
2 F ƞ

2 F ƞ
2

Source df F ƞ
2 F ƞ

2 F ƞ
2

DIF 1 1173.71* .28 446.66* .03 37.11* .07 I * N * DIF 2 1.54 .00 15.28* .00 5.61 .02

DTF 1 69.36* .02 32.40* .00 4.34 .01 I * N * DTF 2 11.57 .01 6.40 .00 10.59 .04

Impact (M) 1 17.82 .00 10.56 .00 29.42* .05 I * N * M 2 21.14* .01 4.86 .00 0.02 .00

Implementation (I) 1 34.07* .01 5100.35* .31 1.79 .00 L * DIF * DTF 1 2.53 .00 27.15* .00 1.68 .00

Length (L) 1 89.91* .02 3993.84* .24 2.35 .00 L * M * DIF 1 0.73 .00 2.34 .00 1.21 .00

Sample size (N) 2 423.81* .20 247.52* .03 46.70* .17 L * M * DTF 1 0.12 .00 0.89 .00 1.58 .00

DIF * DTF 1 46.32* .01 28.97* .00 10.64 .02 L * N * DIF 2 13.61* .01 46.67* .01 0.26 .00

I * DIF 1 12.79 .00 22.69* .00 6.33 .01 L * N * DTF 2 0.14 .00 7.42 .00 0.05 .00

I * DTF 1 117.07* .03 24.70* .00 11.96 .02 L * N * M 2 5.31 .00 0.10 .00 0.12 .00

I * L 1 218.69* .05 5041.57* .31 0.22 .00 M * DIF * DTF 1 5.65 .00 0.65 .00 2.23 .00

I * M 1 124.17* .03 4.92 .00 0.00 .00 N * DIF * DTF 2 26.78* .01 5.89 .00 10.45 .04

I * N 2 0.74 .00 6.80 .00 2.03 .01 N * M * DIF 2 7.89 .00 6.97 .00 20.17* .07

L * DIF 1 75.65* .02 147.81* .01 0.13 .00 N * M * DTF 2 2.75 .00 0.14 .00 0.97 .00

L * DTF 1 3.67 .00 29.72* .00 0.01 .00 I * L * DIF * DTF 1 0.09 .00 17.18 .00 2.00 .00

L * M 1 0.98 .00 0.01 .00 0.10 .00 I * L * M * DIF 1 0.39 .00 0.00 .00 0.01 .00

L * N 2 17.65* .01 39.75* .00 2.09 .01 I * L * M * DTF 1 1.85 .00 1.10 .00 0.82 .00

M * DIF 1 5.01 .00 7.48 .00 21.51* .04 I * L * N * DIF 2 8.19 .00 11.02 .00 1.94 .01

M * DTF 1 9.41 .00 0.01 .00 0.50 .00 I * L * N * DTF 2 3.49 .00 4.78 .00 7.52 .03

N * DIF 2 254.28* .12 200.61* .02 34.65* .13 I * L * N * M 2 7.54 .00 0.66 .00 0.77 .00

N * DTF 2 38.72* .02 8.32 .00 5.26 .02 I * M * DIF * DTF 1 0.28 .00 0.09 .00 0.97 .00

N * M 2 16.20* .01 3.73 .00 25.46* .09 I * N * DIF * DTF 2 6.96 .00 3.82 .00 5.33 .02

I * DIF * DTF 1 98.87* .02 21.72* .00 5.20 .01 I * N * M * DIF 2 10.83 .01 3.07 .00 0.44 .00

I * L * DIF 1 138.98* .03 21.40* .00 2.72 .00 I * N * M * DTF 2 2.97 .00 0.01 .00 2.64 .01

I * L * DTF 1 2.68 .00 19.23* .00 6.73 .01 L * M * DIF * DTF 1 0.65 .00 0.32 .00 0.22 .00

I * L * M 1 9.99 .00 1.85 .00 0.82 .00 L * N * DIF * DTF 2 0.38 .00 7.22 .00 1.33 .00

I * L * N 2 27.19* .01 6.70 .00 0.20 .00 L * N * M * DIF 2 5.90 .00 0.01 .00 0.81 .00

I * M * DIF 1 99.79* .02 9.06 .00 0.56 .00 L * N * M * DTF 2 0.92 .00 0.01 .00 1.24 .00

I * M * DTF 1 4.22 .00 0.40 .00 3.13 .01 N * M * DIF * DTF 2 2.71 .00 0.38 .00 2.32 .01

Note. CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression. DTF indicates that all 

DIF items favor the reference group. No DTF indicates that DIF items may favor either group. * p  < .00089.

CSIBTEST IRTLR LOGREGCSIBTEST IRTLR LOGREG
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Table 15. 

Power to Detect Unidirectional Mixed DIF by Study Variables 

 

  

Procedure Length Sample Impact DTF No DTF DTF No DTF DTF No DTF DTF No DTF

CSIBTEST

15 250 -.5 .38 .75 .88 .98 .92 .89 1.00 .98

15 250 .0 .64 .95 1.00 1.00 .73 .76 .96 .96

15 500 -.5 .65 .90 .99 1.00 .98 .98 .99 1.00

15 500 .0 .88 .98 1.00 1.00 .91 .86 1.00 1.00

15 1000 -.5 .93 1.00 1.00 1.00 1.00 .98 1.00 1.00

15 1000 .0 .97 .99 1.00 1.00 .99 .95 1.00 1.00

30 250 -.5 .45 .72 .99 1.00 .47 .50 .92 .91

30 250 .0 .71 .97 1.00 1.00 .47 .53 .93 .97

30 500 -.5 .78 .99 1.00 1.00 .81 .77 .98 1.00

30 500 .0 .93 .99 1.00 1.00 .78 .71 1.00 1.00

30 1000 -.5 .97 1.00 1.00 1.00 .94 .92 1.00 1.00

30 1000 .0 1.00 1.00 1.00 1.00 .92 .75 1.00 1.00

IRT-LR

15 250 -.5 .34 .76 .95 .99 .62 .66 .99 .99

15 250 .0 .32 .78 1.00 1.00 .42 .48 1.00 1.00

15 500 -.5 .74 .96 1.00 1.00 .88 .88 1.00 1.00

15 500 .0 .71 .99 1.00 1.00 .81 .82 1.00 1.00

15 1000 -.5 .98 1.00 1.00 1.00 .99 1.00 1.00 1.00

15 1000 .0 .95 1.00 1.00 1.00 .99 1.00 1.00 1.00

30 250 -.5 .06 .08 .07 .07 .79 .79 1.00 1.00

30 250 .0 .06 .04 .06 .04 .65 .64 1.00 1.00

30 500 -.5 .09 .11 .07 .14 .98 .94 1.00 1.00

30 500 .0 .07 .08 .07 .08 .94 .96 1.00 1.00

30 1000 -.5 .08 .11 .13 .11 1.00 1.00 1.00 1.00

30 1000 .0 .14 .11 .10 .07 1.00 1.00 1.00 1.00

LOGREG

15 250 -.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

15 250 .0 .71 .88 1.00 1.00 .81 .90 1.00 1.00

15 500 -.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

15 500 .0 .99 1.00 1.00 1.00 1.00 .98 1.00 1.00

15 1000 -.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

15 1000 .0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

30 250 -.5 .81 1.00 1.00 1.00 1.00 1.00 1.00 .98

30 250 .0 .60 .95 1.00 1.00 .91 .81 1.00 .90

30 500 -.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

30 500 .0 1.00 .99 1.00 1.00 1.00 1.00 1.00 .98

30 1000 -.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

30 1000 .0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.4 DIF .8 DIF

All-other implementation Constant implementation

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, 

and LOGREG = logistic regression.  DTF indicates that all DIF items favor the reference group.  No DTF 

inidicates that DIF items may favor either group.

.4 DIF .8 DIF
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Power to Detect Crossing Mixed DIF 

ANOVA revealed that the procedures significantly differed in their ability to 

detect crossing mixed DIF, F(2,285) = 11.66, p < .05.  For significant differences, it was 

found that LOGREG (.72) and IRT-LR (.68) did better than CSIBTEST (.51).  The 

difference between LOGREG and IRT-LR was not significant. 

Table 16 presents the ANOVA results by procedure and Table 17 the mean power 

for each procedure by manipulation.  All procedures demonstrated a main effect for 

sample size and DIF magnitude.  As was found for nonuniform DIF, a significant 

implementation x DIF interaction was found for all procedures.  Specifically, the all-other 

conditions of CSIBTEST and LOGREG exhibited lower power in the small DIF 

conditions but good power in the large, but the constant approach produced higher power 

than the all-other in the 0.4 conditions due to error and less in the 0.8.  Findings for IRT-

LR could be attributed to its inflated error rate. 

Also, a significant implementation x DTF interaction was found for CSIBTEST 

and LOGREG that varied.  For CSIBTEST, the all-other conditions benefitted from 

minimal DTF; the constant showed no difference.  The LOGREG conditions also 

demonstrated improved detection in the all-other conditions when DTF was minimal but 

the constant showed a decline.  Additionally, a significant interaction of implementation 

x test length was observed for CSIBTEST and IRT-LR procedures.  The all-other 

conditions of CSIBTEST were found to benefit from increased test length whereas the 

constant conditions were affected by the elevated Type I error rate of the 15-item 

conditions.  IRT-LR demonstrated improved power in the 30-item conditions over the 15, 

a gain that was more marked in the all-other conditions.  Lastly, a significant impact main 
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effect was found for LOGREG and CSIBTEST but this effect for the latter was caused by 

elevated error rates. 

The study procedures demonstrated worse detection of crossing mixed DIF than 

unidirectional mixed DIF though both exhibited equivalent magnitudes of DIF (0.4 or 

0.8) and shifts in both the a- and b-parameters.  This indicates that the presence of a 

crossing point reduces the likelihood that a DIF item will be detected by these 

procedures, which is consistent with past findings that nonuniform DIF is more difficult 

to detect than uniform.  Again, the nonparametric procedures performed better when an 

all-other approach was employed and IRT-LR when a constant approach was employed.  

Considering Type I error rate, findings indicated that the all-other approach of LOGREG 

was best able to detect items exhibiting crossing mixed DIF. 
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Table 16. 

ANOVA Results for Power to Detect Crossing Mixed DIF by Study Procedures 

Source df F ƞ
2 F ƞ

2 F ƞ
2

Source df F ƞ
2 F ƞ

2 F ƞ
2

DIF 1 2541.53* .37 1309.98* .27 447.00* .34 I * N * DIF 2 15.54* .00 36.72* .02 1.46 .00

DTF 1 97.83* .01 0.43 .00 0.00 .00 I * N * DTF 2 0.63 .00 0.05 .00 1.42 .00

Impact (M) 1 42.91* .01 1.26 .00 151.62* .11 I * N * M 2 4.36 .00 0.38 .00 3.74 .01

Implementation (I) 1 87.22* .01 616.34* .13 2.89 .00 L * DIF * DTF 1 0.23 .00 4.77 .00 9.18 .01

Length (L) 1 645.31* .09 329.38* .07 13.61 .01 L * M * DIF 1 2.42 .00 0.00 .00 10.89 .01

Sample size (N) 2 489.52* .14 252.55* .11 126.02* .19 L * M * DTF 1 3.30 .00 4.37 .00 1.58 .00

DIF * DTF 1 5.88 .00 5.29 .00 18.17 .01 L * N * DIF 2 7.16 .00 26.10* .01 0.17 .00

I * DIF 1 401.16* .06 1454.24* .30 33.38* .03 L * N * DTF 2 0.88 .00 0.07 .00 0.38 .00

I * DTF 1 106.04* .02 0.60 .00 33.26* .03 L * N * M 2 3.35 .00 2.16 .00 1.27 .00

I * L 1 1359.92* .20 64.84* .01 3.50 .00 M * DIF * DTF 1 20.67* .00 5.83 .00 4.82 .00

I * M 1 127.36* .02 2.50 .00 12.29 .01 N * DIF * DTF 2 9.09 .00 0.50 .00 0.62 .00

I * N 2 106.01* .03 10.45 .00 0.01 .00 N * M * DIF 2 0.66 .00 3.51 .00 4.82 .01

L * DIF 1 0.01 .00 94.39* .02 2.70 .00 N * M * DTF 2 0.64 .00 0.25 .00 0.59 .00

L * DTF 1 0.23 .00 0.25 .00 3.67 .00 I * L * DIF * DTF 1 4.81 .00 9.51 .00 3.38 .00

L * M 1 20.14* .00 2.58 .00 4.32 .00 I * L * M * DIF 1 10.30 .00 2.09 .00 2.67 .00

L * N 2 5.14 .00 11.79 .00 3.53 .01 I * L * M * DTF 1 2.07 .00 1.76 .00 0.75 .00

M * DIF 1 1.25 .00 2.58 .00 81.24* .06 I * L * N * DIF 2 2.07 .00 0.44 .00 0.23 .00

M * DTF 1 0.03 .00 3.04 .00 0.21 .00 I * L * N * DTF 2 0.64 .00 0.67 .00 0.67 .00

N * DIF 2 7.46 .00 6.91 .00 49.37* .07 I * L * N * M 2 0.19 .00 1.19 .00 0.24 .00

N * DTF 2 1.44 .00 0.40 .00 2.13 .00 I * M * DIF * DTF 1 12.66 .00 1.53 .00 3.59 .00

N * M 2 1.47 .00 0.39 .00 7.10 .01 I * N * DIF * DTF 2 9.42 .00 0.10 .00 7.38 .01

I * DIF * DTF 1 4.31 .00 9.95 .00 1.69 .00 I * N * M * DIF 2 6.49 .00 0.21 .00 1.46 .00

I * L * DIF 1 35.63* .01 114.68* .02 6.09 .00 I * N * M * DTF 2 0.25 .00 0.61 .00 0.72 .00

I * L * DTF 1 0.04 .00 1.06 .00 11.03 .01 L * M * DIF * DTF 1 0.47 .00 7.37 .00 2.74 .00

I * L * M 1 45.22* .01 0.27 .00 1.22 .00 L * N * DIF * DTF 2 2.33 .00 1.08 .00 1.89 .00

I * L * N 2 5.15 .00 8.51 .00 1.23 .00 L * N * M * DIF 2 0.18 .00 0.60 .00 1.50 .00

I * M * DIF 1 1.75 .00 0.00 .00 0.35 .00 L * N * M * DTF 2 0.07 .00 0.58 .00 0.21 .00

I * M * DTF 1 0.39 .00 6.76 .00 1.12 .00 N * M * DIF * DTF 2 0.87 .00 2.09 .00 0.06 .00

IRTLR LOGREGCSIBTEST IRTLR LOGREG

Note. CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression. DTF indicates that all 

DIF items favor the reference group. No DTF indicates that DIF items may favor either group. * p  < .00089.

CSIBTEST
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Table 17. 

Power to Detect Crossing Mixed DIF by Study Variables 

 

  

Procedure Length Sample Impact DTF No DTF DTF No DTF DTF No DTF DTF No DTF

CSIBTEST

15 250 -.5 .08 .10 .36 .55 .52 .57 .80 .79

15 250 .0 .06 .20 .47 .58 .37 .40 .65 .62

15 500 -.5 .15 .25 .66 .87 .75 .75 .97 .93

15 500 .0 .12 .37 .72 .83 .41 .53 .77 .75

15 1000 -.5 .35 .51 .87 .98 .86 .75 1.00 .96

15 1000 .0 .39 .68 .96 .95 .46 .47 .87 .85

30 250 -.5 .08 .17 .51 .82 .10 .10 .31 .35

30 250 .0 .02 .17 .61 .73 .12 .11 .27 .30

30 500 -.5 .20 .31 .81 .96 .18 .14 .30 .41

30 500 .0 .14 .41 .94 .97 .20 .15 .29 .30

30 1000 -.5 .45 .65 .99 1.00 .26 .33 .46 .43

30 1000 .0 .41 .75 1.00 1.00 .20 .13 .38 .33

IRT-LR

15 250 -.5 .54 .49 .35 .38 .16 .17 .67 .59

15 250 .0 .57 .53 .39 .50 .14 .16 .73 .69

15 500 -.5 .88 .75 .57 .54 .16 .19 .89 .86

15 500 .0 .91 .79 .42 .76 .13 .17 .97 .99

15 1000 -.5 .99 .98 .82 .75 .19 .23 1.00 1.00

15 1000 .0 .99 .92 .54 .90 .31 .23 1.00 1.00

30 250 -.5 .70 .63 .98 .99 .20 .20 .84 .86

30 250 .0 .55 .57 1.00 1.00 .16 .16 .89 .87

30 500 -.5 .91 .91 1.00 1.00 .23 .25 .97 .98

30 500 .0 .85 .89 1.00 1.00 .31 .25 .99 .99

30 1000 -.5 .99 1.00 1.00 1.00 .38 .43 1.00 1.00

30 1000 .0 1.00 .99 1.00 1.00 .44 .45 1.00 1.00

LOGREG

15 250 -.5 .34 .34 .95 1.00 .78 .65 1.00 1.00

15 250 .0 .03 .02 .74 1.00 .02 .04 .95 .80

15 500 -.5 .59 .89 1.00 1.00 1.00 1.00 1.00 1.00

15 500 .0 .11 .14 1.00 .99 .11 .17 .99 1.00

15 1000 -.5 .95 .99 1.00 1.00 1.00 1.00 1.00 1.00

15 1000 .0 .45 .80 1.00 1.00 .70 .77 1.00 1.00

30 250 -.5 .12 .24 .72 .95 .47 .38 1.00 .47

30 250 .0 .02 .06 .86 .95 .01 .15 1.00 .07

30 500 -.5 .36 .70 .99 1.00 .93 .82 1.00 .88

30 500 .0 .07 .41 .99 1.00 .24 .34 1.00 .34

30 1000 -.5 .86 .97 1.00 1.00 1.00 1.00 1.00 .99

30 1000 .0 .44 .81 1.00 1.00 .86 .74 1.00 .77

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, 

and LOGREG = logistic regression.  DTF indicates that all DIF items favor the reference group.  No DTF 

inidicates that DIF items may favor either group.

All-other implementation Constant implementation

.4 DIF .4 DIF .8 DIF.8 DIF
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Power to Detect Functionally Uniform DIF 

A significant difference was found in the ability of the procedures to detect 

functionally uniform DIF, F(2,285) = 9.59, p < .05.  Post hoc tests showed that IRT-LR 

(.67) exhibited better power than both nonparametric procedures.  For the remaining 

conditions, comparable power was observed: CSIBTEST (.52) and IRT-LR (.47).   

Hypothesis 7 stated that all three procedures would produce lower power for 

functionally uniform DIF detection relative to their detection rate for the other DIF 

prototypes.  To test this, ANOVA results were examined.  Although significant 

differences in the detection of the various DIF type were found for CSIBTEST, F(4,475) 

= 91.55, p < .05, and LOGREG, support was not found for the hypothesis.  Neither of the 

procedures displayed significantly less power to detect functionally uniform DIF than the 

other DIF types: CSIBTEST detected nonuniform (.38) at a lower rate than functionally 

uniform (.52) and LOGREG showed a comparable rate for nonuniform (.51) and 

functionally uniform (.47).  Note that a significant difference was not found for IRT-LR, 

F(4,475) = 1.45, p > .05, and that comparable power was observed across all of the DIF 

prototypes (.67 to .70) except uniform (.77). 

Table 18 presents the ANOVA results by procedure and Table 19 the mean power 

for each procedure by manipulation.  Like results for the other DIF prototypes, significant 

main effects were seen for sample size and DIF magnitude, with cell means showing 

better detection as either increased.  Though many other significant factors were 

identified, these were attributable to increased Type I error rates or the effects of the 

sample or DIF magnitude manipulations. 
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When considered in conjunction with observed Type I error rates, it was found 

that the procedures when implemented in their recommended fashion demonstrated 

comparable detection rates for functionally uniform DIF.  Of the manipulations, only 

sample size and DIF magnitude yielded meaningful effects, and both improved detection.  

Contrary to expectation, functionally uniform DIF was not detected at a significantly 

lower rate than the other DIF prototypes.  Moreover, for CSIBTEST, it was found that it 

was detected at a better rate than nonuniform DIF. 
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Table 18. 

ANOVA Results for Power to Detect Functionally Uniform DIF by Study Procedures 

 

Source df F ƞ
2 F ƞ

2 F ƞ
2

Source df F ƞ
2 F ƞ

2 F ƞ
2

DIF 1 1207.24* .43 843.82* .18 608.35* .41 I * N * DIF 2 3.18 .00 28.99* .01 3.73 .01

DTF 1 0.03 .00 41.70* .01 51.08* .03 I * N * DTF 2 0.94 .00 0.99 .00 1.02 .00

Impact (M) 1 17.22 .01 0.04 .00 0.93 .00 I * N * M 2 1.78 .00 0.28 .00 0.76 .00

Implementation (I) 1 106.49* .04 2324.84* .48 0.39 .00 L * DIF * DTF 1 0.03 .00 1.87 .00 22.72* .02

Length (L) 1 139.77* .05 18.01 .00 7.73 .01 L * M * DIF 1 0.57 .00 0.03 .00 1.94 .00

Sample size (N) 2 433.99* .31 229.25* .10 202.57* .27 L * M * DTF 1 0.09 .00 0.53 .00 0.53 .00

DIF * DTF 1 0.06 .00 2.00 .00 6.37 .00 L * N * DIF 2 2.50 .00 5.56 .00 0.15 .00

I * DIF 1 7.74 .00 84.99* .02 18.01 .01 L * N * DTF 2 0.28 .00 0.23 .00 0.15 .00

I * DTF 1 15.17 .01 50.69* .01 69.96* .05 L * N * M 2 0.52 .00 0.01 .00 0.94 .00

I * L 1 112.62* .04 404.15* .08 6.16 .00 M * DIF * DTF 1 2.12 .00 0.00 .00 4.63 .00

I * M 1 57.84* .02 0.21 .00 0.03 .00 N * DIF * DTF 2 0.26 .00 1.23 .00 2.42 .00

I * N 2 21.15* .02 94.92* .04 0.34 .00 N * M * DIF 2 3.04 .00 0.22 .00 2.04 .00

L * DIF 1 28.94* .01 151.28* .03 21.61* .01 N * M * DTF 2 0.14 .00 0.51 .00 2.56 .00

L * DTF 1 0.66 .00 0.09 .00 2.48 .00 I * L * DIF * DTF 1 0.57 .00 2.34 .00 11.42 .01

L * M 1 0.23 .00 0.15 .00 0.22 .00 I * L * M * DIF 1 0.06 .00 0.06 .00 0.27 .00

L * N 2 2.52 .00 10.42 .00 0.14 .00 I * L * M * DTF 1 1.44 .00 0.00 .00 1.15 .00

M * DIF 1 0.00 .00 2.85 .00 7.44 .01 I * L * N * DIF 2 1.29 .00 0.62 .00 0.75 .00

M * DTF 1 0.00 .00 0.02 .00 76.16* .05 I * L * N * DTF 2 0.16 .00 0.24 .00 0.43 .00

N * DIF 2 24.58* .02 14.19* .01 13.28* .02 I * L * N * M 2 3.19 .00 0.03 .00 0.02 .00

N * DTF 2 0.23 .00 1.40 .00 1.86 .00 I * M * DIF * DTF 1 11.21 .00 0.92 .00 0.07 .00

N * M 2 0.16 .00 0.19 .00 0.09 .00 I * N * DIF * DTF 2 4.71 .00 1.91 .00 4.97 .01

I * DIF * DTF 1 5.63 .00 1.35 .00 12.45 .01 I * N * M * DIF 2 5.73 .00 0.09 .00 0.73 .00

I * L * DIF 1 1.44 .00 55.34* .01 6.98 .00 I * N * M * DTF 2 0.52 .00 0.96 .00 1.17 .00

I * L * DTF 1 0.14 .00 0.75 .00 5.19 .00 L * M * DIF * DTF 1 0.03 .00 0.15 .00 0.02 .00

I * L * M 1 1.69 .00 0.00 .00 0.05 .00 L * N * DIF * DTF 2 0.12 .00 2.54 .00 0.72 .00

I * L * N 2 0.88 .00 5.10 .00 0.63 .00 L * N * M * DIF 2 0.22 .00 0.18 .00 1.37 .00

I * M * DIF 1 7.85 .00 1.35 .00 2.97 .00 L * N * M * DTF 2 0.26 .00 0.16 .00 0.02 .00

I * M * DTF 1 9.58 .00 0.57 .00 2.97 .00 N * M * DIF * DTF 2 0.71 .00 0.89 .00 17.04* .02

Note. CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression. DTF indicates that all 

DIF items favor the reference group. No DTF indicates that DIF items may favor either group. * p  < .00089.

CSIBTEST IRTLR LOGREGCSIBTEST IRTLR LOGREG
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Table 19. 

Power to Detect Functionally Uniform DIF by Study Variables 

 

  

Procedure Length Sample Impact DTF No DTF DTF No DTF DTF No DTF DTF No DTF

CSIBTEST

15 250 -.5 .06 .06 .24 .33 .50 .52 .73 .62

15 250 .0 .15 .18 .48 .45 .43 .37 .62 .68

15 500 -.5 .16 .20 .57 .72 .66 .58 .89 .82

15 500 .0 .29 .38 .81 .66 .50 .49 .82 .90

15 1000 -.5 .32 .49 .82 .89 .81 .58 .99 .98

15 1000 .0 .55 .69 .95 .88 .65 .63 .93 .99

30 250 -.5 .10 .05 .28 .42 .18 .09 .46 .34

30 250 .0 .04 .10 .46 .43 .19 .14 .43 .43

30 500 -.5 .08 .11 .57 .71 .26 .24 .72 .65

30 500 .0 .21 .29 .82 .72 .26 .28 .67 .66

30 1000 -.5 .27 .38 .95 .93 .46 .39 .94 .87

30 1000 .0 .57 .69 .99 .93 .37 .17 .90 .90

IRT-LR

15 250 -.5 1.00 1.00 1.00 1.00 .10 .19 .29 .18

15 250 .0 .99 1.00 1.00 1.00 .17 .04 .32 .24

15 500 -.5 1.00 1.00 1.00 1.00 .29 .20 .58 .42

15 500 .0 1.00 1.00 1.00 1.00 .24 .14 .63 .43

15 1000 -.5 1.00 1.00 1.00 1.00 .40 .27 .93 .72

15 1000 .0 1.00 1.00 1.00 1.00 .33 .31 .91 .69

30 250 -.5 .52 .47 .86 .88 .17 .21 .54 .32

30 250 .0 .44 .50 .89 .92 .23 .16 .56 .36

30 500 -.5 .60 .63 .99 .99 .39 .22 .81 .68

30 500 .0 .58 .63 1.00 .99 .35 .21 .82 .71

30 1000 -.5 .71 .68 1.00 1.00 .65 .40 .99 .91

30 1000 .0 .70 .73 1.00 1.00 .58 .35 1.00 .94

LOGREG

15 250 -.5 .00 .02 .48 .37 .04 .00 .71 .11

15 250 .0 .02 .00 .33 .68 .03 .00 .58 .66

15 500 -.5 .15 .03 .82 .87 .67 .03 1.00 .46

15 500 .0 .04 .09 .89 .95 .09 .05 .98 .97

15 1000 -.5 .73 .18 .99 .98 .96 .03 1.00 .95

15 1000 .0 .23 .63 1.00 1.00 .48 .55 1.00 1.00

30 250 -.5 .07 .02 .53 .31 .06 .01 .71 .03

30 250 .0 .00 .03 .19 .53 .01 .15 .60 .05

30 500 -.5 .18 .09 .80 .77 .42 .12 .97 .12

30 500 .0 .03 .26 .82 .92 .08 .24 .94 .26

30 1000 -.5 .56 .33 1.00 .98 .94 .29 1.00 .25

30 1000 .0 .30 .67 1.00 1.00 .51 .61 1.00 .58

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, 

and LOGREG = logistic regression.  DTF indicates that all DIF items favor the reference group.  No DTF 

inidicates that DIF items may favor either group.

Constant implementation

.8 DIF

All-other implementation

.4 DIF .8 DIF .4 DIF
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Type III Error Rates 

A significant difference was found among the procedures for Type III error rate, 

F(2,285) = 2773.63, p < .05.  Post hoc tests revealed that CSIBTEST (.24) demonstrated 

lower Type III error rates than both IRT-LR (.62) and LOGREG (.96).  Additionally, it 

was found that IRT-LR produced significantly lower error rates than LOGREG.   

It was expected that the procedures would exhibit higher Type III error rates for 

functionally uniform DIF than for the other types of DIF (H12).  To test this, a one-way 

ANOVA was run for each procedure.  For CSIBTEST, a significant difference in error 

rate by DIF prototype was found, F(4,475) = 55.21, p < .05.  Post hoc tests revealed that 

functionally uniform DIF (.34) demonstrated a significantly higher error rate than 

uniform (.11), nonuniform (.18), and unidirectional mixed DIF (.07) - but not crossing 

mixed DIF (.51).  A significant difference was also found for IRT-LR, F(4,475) = 108.57, 

p < .05, but again the hypothesis was not supported.  Specifically, the rate for 

functionally uniform (.78) was significantly greater than that for unidirectional mixed 

(.34) and crossing mixed DIF (.24), but not than the rate for uniform (.78) and 

nonuniform DIF (.98).  For LOGREG a significant difference was found, F(4,475) = 

18.19, p < .05, but again cell means did not confirm the hypothesis.  Namely, it was 

found that the error rate for functionally uniform DIF (.88) was significantly lower than 

that for uniform (.96), nonuniform (.99), unidirectional mixed (.98), and crossing mixed 

(.98). 

Table 22 presents the ANOVA results by procedure and Table 23 the mean error 

rates for each procedure by manipulation.  A number of factors were found to affect the 

procedures, including many significant interactions; however, these could be accounted 
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for by the main effects that are outlined.  Consistent with Hypothesis 9 and the findings 

for power, an effect for sample size was seen for all procedures in which error rates 

decreased as sample size grew.  Also, it was specified that lower Type III error rates 

would be observed for the procedures in the larger DIF magnitude conditions (H8).  A 

significant DIF magnitude effect was found for CSIBTEST and LOGREG.   For 

LOGREG, a small drop in error rate was found in the 0.8 DIF condition relative to the 

0.4.  Conversely, for CSIBTEST, a slight increase was seen in the 0.8 conditions relative 

to the 0.4.  This provides only partial support for Hypothesis 8.  It was also stated that 

lower Type III error would be observed in the 30-item test conditions (H11).  A 

significant main effect for test was found across procedures.  Findings for CSIBTEST 

and LOGREG support the hypothesis.  No cell differences were seen for IRT-LR.  

Additionally, a main effect was found for impact such that the procedures demonstrated 

lower error rates when it was absent.   

A significant implementation main effect was seen for all procedures.  For 

CSIBTEST, a lower Type III error rate was shown in the all-other conditions whereas 

LOGREG was lower in the constant; IRT-LR exhibited minor differences.  A significant 

DTF effect was found for IRT-LR, in which error rate was lower in the maximum DTF 

conditions, and LOGREG, although it produced no mean difference in these conditions.  

Hypothesis 10 postulated that lower Type III error would be observed for the constant 

implementation relative to the all-other in conditions with increased contamination 

potential.  To investigate this, the significance of the implementation x DIF x DTF 

interaction and its corresponding cell means were examined.  The interaction was found 

to be significant for all three procedures however its effect on the cell means was not 
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consistent with the hypothesis.  For CSIBTEST, the all-other conditions showed lower 

error rates than the constant though error rates in the all-other conditions were lowest in 

the 0.4 DIF with No DTF conditions.  Results for IRT-LR showed comparable error rates 

across implementation in the 0.4 DIF conditions but, in the 0.8, lower error rates were 

found in the maximum DTF conditions.  Error rates for LOGREG were found to be 

equally high across conditions when the all-other approach was used.  When the constant 

approach was used, lower error rates were seen when DTF was present and in 0.8 DIF 

conditions. 

In sum, none of the methods exhibited an average Type III error rate near .05.  Of 

the procedures, CSIBTEST yielded the best rate followed by IRT-LR.  In contrast to 

findings so far, LOGREG provided the worst performance with error rates near or equal 

to 1.0 in the majority of conditions.  For the manipulations, it was found that increased 

sample size and the absence of impact reduced error rates for all procedures.  Also, 

increased test length improved error rates for the nonparametric procedures.  In line with 

findings thus far, CSIBTEST’s performance was worsened by contamination when the 

all-other approach used.  Additionally, it was found that error rates varied by DIF 

prototype across the procedures, although - differing from expectation - functionally 

uniform DIF was not consistently misclassified at a greater rate than the other prototypes. 
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Table 20. 

ANOVA Results for Type III Error Rate by Study Procedures 

Source df F ƞ
2 F ƞ

2 F ƞ
2

Source df F ƞ
2 F ƞ

2 F ƞ
2

DIF 1 170.82* .01 1.39 .00 149.91* .02 I * N * DIF 2 99.94* .01 75.62* .02 157.82* .05

DTF 1 10.91 .00 1912.80* .21 159.29* .02 I * N * DTF 2 3.66 .00 173.59* .04 10.46* .00

Impact (M) 1 7450.95* .30 44.70* .00 51.64* .01 I * N * M 2 51.45* .00 12.80* .00 13.42* .00

Implementation (I) 1 7396.11* .30 81.49* .01 2308.05* .33 L * DIF * DTF 1 52.05* .00 13.22* .00 95.27* .01

Length (L) 1 1179.41* .05 11.93* .00 65.20* .01 L * M * DIF 1 64.73* .00 6.20 .00 85.84* .01

Sample size (N) 2 604.35* .05 124.29* .03 70.22* .02 L * M * DTF 1 1.50 .00 6.83 .00 32.76* .00

DIF * DTF 1 63.26* .00 336.45* .04 73.60* .01 L * N * DIF 2 70.00* .01 22.56* .00 1.90 .00

I * DIF 1 484.81* .02 6.08 .00 161.02* .02 L * N * DTF 2 6.35 .00 101.58* .02 20.08* .01

I * DTF 1 5.67 .00 102.65* .01 278.22* .04 L * N * M 2 16.69* .00 56.50* .01 79.83* .02

I * L 1 2229.03* .09 656.56* .07 14.17* .00 M * DIF * DTF 1 31.62* .00 126.55* .01 0.28 .00

I * M 1 510.51* .02 0.72 .00 25.69* .00 N * DIF * DTF 2 13.49* .00 5.91 .00 29.66* .01

I * N 2 155.75* .01 341.64* .08 41.19* .01 N * M * DIF 2 44.90* .00 10.56* .00 75.60* .02

L * DIF 1 90.67* .00 4.33 .00 0.97 .00 N * M * DTF 2 8.17* .00 16.82* .00 43.59* .01

L * DTF 1 515.50* .02 785.61* .09 89.13* .01 I * L * DIF * DTF 1 5.89 .00 0.49 .00 110.32* .02

L * M 1 23.48* .00 33.10* .00 30.23* .00 I * L * M * DIF 1 51.34* .00 21.67* .00 58.26* .01

L * N 2 2.39 .00 166.32* .04 14.26* .00 I * L * M * DTF 1 0.37 .00 1.38 .00 38.49* .01

M * DIF 1 401.58* .02 196.79* .02 133.32* .02 I * L * N * DIF 2 0.16 .00 12.72* .00 3.70 .00

M * DTF 1 12.96* .00 61.82* .01 14.91* .00 I * L * N * DTF 2 54.63* .00 33.85* .01 25.98* .01

N * DIF 2 27.56* .00 47.30* .01 115.72* .03 I * L * N * M 2 1.91 .00 37.51* .01 64.22* .02

N * DTF 2 67.80* .01 128.15* .03 2.94 .00 I * M * DIF * DTF 1 9.90 .00 269.10* .03 4.76 .00

N * M 2 6.13 .00 2.20 .00 13.50* .00 I * N * DIF * DTF 2 5.73 .00 13.16* .00 29.95* .01

I * DIF * DTF 1 78.52* .00 91.20* .01 71.88* .01 I * N * M * DIF 2 19.64* .00 31.31* .01 66.00* .02

I * L * DIF 1 53.54* .00 16.05* .00 0.96 .00 I * N * M * DTF 2 2.27 .00 28.45* .01 29.92* .01

I * L * DTF 1 278.94* .01 0.52 .00 112.32* .02 L * M * DIF * DTF 1 5.21 .00 2.45 .00 43.32* .01

I * L * M 1 41.28* .00 67.79* .01 28.53* .00 L * N * DIF * DTF 2 3.83 .00 92.40* .02 17.26* .00

I * L * N 2 2.30 .00 19.34* .00 23.69* .01 L * N * M * DIF 2 20.15* .00 121.13* .03 25.34* .01

I * M * DIF 1 120.00* .00 60.95* .01 223.66* .03 L * N * M * DTF 2 13.83* .00 36.89* .01 20.85* .01

I * M * DTF 1 60.30* .00 129.20* .01 20.96* .00 N * M * DIF * DTF 2 41.46* .00 89.26* .02 16.84* .00

CSIBTEST IRTLR LOGREG

Note. CSIBTEST = crossing simultaneous bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression. DTF indicates that all 

DIF items favor the reference group. No DTF indicates that DIF items may favor either group. * p  < .00089.

CSIBTEST IRTLR LOGREG
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Table 21.  

Type III Error Rate by Study Variables 

 

  

Procedure Length Sample Impact DTF No DTF DTF No DTF DTF No DTF DTF No DTF

CSIBTEST

15 250 -.5 .25 .28 .29 .33 .38 .36 .35 .38

15 250 .0 .17 .13 .12 .19 .30 .34 .33 .31

15 500 -.5 .25 .26 .22 .31 .39 .36 .36 .38

15 500 .0 .10 .08 .13 .18 .28 .34 .26 .28

15 1000 -.5 .13 .21 .19 .31 .37 .36 .32 .37

15 1000 .0 .06 .11 .07 .14 .33 .34 .25 .23

30 250 -.5 .32 .27 .32 .27 .27 .23 .35 .29

30 250 .0 .22 .14 .20 .16 .28 .25 .19 .20

30 500 -.5 .27 .19 .26 .28 .23 .26 .30 .30

30 500 .0 .13 .13 .20 .14 .23 .21 .20 .19

30 1000 -.5 .17 .15 .28 .27 .24 .26 .30 .31

30 1000 .0 .12 .07 .19 .11 .16 .24 .17 .18

IRT-LR

15 250 -.5 .61 .63 .53 .72 .63 .68 .64 .75

15 250 .0 .65 .63 .56 .60 .64 .69 .59 .72

15 500 -.5 .53 .61 .51 .74 .59 .71 .62 .72

15 500 .0 .57 .68 .51 .65 .63 .69 .56 .70

15 1000 -.5 .54 .64 .48 .72 .55 .60 .55 .60

15 1000 .0 .55 .68 .59 .68 .54 .62 .54 .60

30 250 -.5 .69 .65 .64 .63 .62 .63 .63 .59

30 250 .0 .65 .66 .64 .65 .61 .61 .61 .61

30 500 -.5 .64 .61 .62 .63 .60 .60 .60 .61

30 500 .0 .63 .61 .62 .60 .60 .60 .57 .62

30 1000 -.5 .62 .63 .61 1.00 .60 .59 .58 .60

30 1000 .0 .61 .69 .60 .64 .59 .59 .57 .61

LOGREG

15 250 -.5 1.00 .99 1.00 1.00 .91 .90 .98 .95

15 250 .0 1.00 1.00 1.00 .99 1.00 1.00 .98 .97

15 500 -.5 1.00 1.00 .99 .99 .96 1.00 .89 .98

15 500 .0 1.00 .96 .99 .99 .93 1.00 .92 .88

15 1000 -.5 .99 .99 1.00 .99 .93 .91 .94 .97

15 1000 .0 .98 1.00 .99 .99 .98 .99 .82 .83

30 250 -.5 1.00 1.00 .99 .99 .97 .93 .95 .97

30 250 .0 1.00 1.00 .99 .99 .80 .96 .89 .98

30 500 -.5 .99 .99 .99 .99 .96 .96 .89 .96

30 500 .0 .97 .96 .99 .98 .98 .94 .83 .97

30 1000 -.5 .99 .99 .98 .97 .92 .96 .87 .96

30 1000 .0 1.00 .98 .99 .99 .98 .94 .78 .95

All-other implementation Constant implementation

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, 

and LOGREG = logistic regression.  DTF indicates that all DIF items favor the reference group.  No DTF 

inidicates that DIF items may favor either group.

.4 DIF .8 DIF .4 DIF .8 DIF
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Classification of DIF Type 

To identify whether any particular DIF type was systematically misidentified, 

Tables 22 through 25 present details about the classification of hits in the form of 

confusion matrices.  Specifically, for all procedures, each test item (labeled by number in 

the tables) and the DIF type it is known to exhibit are listed.  The total number of times a 

procedure flagged a given test item as a DIF item is shown under the column labeled 

“Total detections”.  The remaining columns indicate the number of times a detection 

(regardless of whether it was correct) met the criteria listed in Table 5 and was classified 

as the DIF type listed in the column label: “Uniform”, “Nonuniform”, or “Mixed”.  Note 

that it is possible for a significant omnibus test for DIF to not yield a significant follow-

up test for a specific DIF prototype; the number of times this occurred is captured under 

the column labeled “No type indicated”.  For CSIBTEST, classification is based on the 

detection of a point at which the group IRFs cross, therefore it has no identifications in 

the “Mixed” column.  Additionally, CSIBTEST always provides a classification 

whenever an item is flagged, thus it has no identifications in the “No type indicated” 

column. 

For items that are known to exhibit “No DIF”, all detections are false positives 

and reflect Type I errors.  For test items known to exhibit DIF (uniform, nonuniform, 

functionally uniform, crossing mixed, and unidirectional mixed), all detections are true 

positives and represent power.  Furthermore, for items know to possess DIF, bold entries 

highlight correct detections followed by accurate identifications; ideally, these values 

should be large relative to the other identification values for the same test item.  Given 
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this, all identifications that are not bold represent misidentifications and therefore indicate 

Type III errors. 

Of the procedures, CSIBTEST provided the greatest number of accurate 

classifications.  In the all-other conditions, items known to exhibit nonuniform DIF were 

accurately identified for 99% of detections (across both levels of test length).  Items 

know to exhibit uniform DIF were correctly identified 83% of the time, which is similar 

to the observed rate for crossing mixed (81%) and unidirectional mixed DIF (85%).  

Functionally uniform DIF was correctly identified in 53% of detections.  Of the false 

positives, 62% were classified as nonuniform.  For the constant conditions, items known 

not to have DIF tended to be identified as nonuniform (64%) when incorrectly detected.  

72% of nonuniform DIF items were correctly identified, which is lower than the rate for 

uniform (.94), unidirectional mixed (.97), and functionally uniform (.75).  Additionally, 

correct detections of crossing mixed DIF items were properly identified only 16% of the 

time. 

Both IRT-LR and LOGREG exhibited a low number of detections that were 

accurately identified in follow up tests.  For IRT-LR, when an all-other approach was 

used, the procedure tended to classify false positives as uniform in the 15-item conditions 

(57%) and mixed in the 30-item (95%).  In terms of identifying DIF type, classification 

accuracy was low for detections of the items known to possess nonuniform (3%) and 

functionally uniform DIF (0.06%).  Rates improved somewhat for detections of uniform 

DIF (14%) and substantially for items known to exhibit unidirectional mixed (36%) and 

crossing mixed DIF (68%), it should be noted that 75% of detections related to items 

known to not exhibit mixed DIF received the classification of mixed, which draws into 
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question the veracity of these findings.  Additionally, as can be seen in Table 24, Item 30 

was never detected in the all-other conditions; this is likely attributable to poor estimation 

of the item’s parameters, which demonstrated high discrimination and low difficulty.  

Findings for the constant conditions of IRT-LR presented a similar pattern.  Namely, less 

than 1% of detections for items known to exhibit nonuniform and functionally uniform 

DIF were properly identified.  The percentage of correct identifications for uniform was 

19% of detections, and again improved for items known to exhibit unidirectional mixed 

(80%) and crossing mixed DIF items (97%).  Although the latter two findings are again 

called into question as 88% of the non-mixed DIF items were also classified as mixed; 

similarly, 97% of false positives were labeled mixed. 

For LOGREG in the all-other conditions, detections of known non-DIF items 

tended not to be identified as any particular DIF type (60%); this trend extended to the 

DIF items, resulting in a low rate of accurate identifications.  That is, correct detections 

for items known to exhibit uniform, nonuniform, unidirectional mixed, and crossing 

mixed DIF were properly identified in follow up tests less than 1% of the time.  For 

functionally uniform, the rate was about 2%.  The constant conditions showed a minor 

improvement.  Specifically, rates for uniform (5%), nonuniform (2%), and crossing 

mixed DIF (4%) marginally increased.  Of the detections for items known to exhibit 

functionally uniform DIF, 31% were properly identified; on the other hand, for 

unidirectional mixed DIF the rate was 0.23%. 
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Table 22. 

Confusion Matrix of Detections and Identifications by Procedure for 15-item All-other 

Implementation Conditions 

 

  

Procedure

Item 

number

DIF type item is 

known to exhibit

Total 

detections Uniform Nonuniform Mixed

No type 

indicated

CSIB

6 No DIF 233 131 102 NA NA

7 No DIF 290 161 129 NA NA

8 No DIF 161 39 122 NA NA

9 No DIF 105 29 76 NA NA

10 No DIF 183 72 111 NA NA

11 Uniform 2133 1785 348 NA NA

12 Nonuniform 1041 21 1020 NA NA

13 Functionally Uniform 1169 743 426 NA NA

14 Crossing mixed 1234 423 811 NA NA

15 Unidirectional Mixed 2217 2040 177 NA NA

IRT-LR

6 No DIF 2839 1907 252 217 463

7 No DIF 2339 1443 184 106 606

8 No DIF 3000 2418 0 581 1

9 No DIF 2998 1246 211 766 775

10 No DIF 2604 816 393 694 701

11 Uniform 1728 851 62 713 102

12 Nonuniform 2164 785 161 954 264

13 Functionally Uniform 3000 2558 1 439 2

14 Crossing mixed 2155 806 153 696 500

15 Unidirectional Mixed 2212 1590 11 502 109

LOGREG

6 No DIF 92 6 12 14 60

7 No DIF 125 8 19 2 96

8 No DIF 53 0 2 5 46

9 No DIF 30 3 0 2 25

10 No DIF 53 2 0 4 47

11 Uniform 2176 32 13 1 2130

12 Nonuniform 1247 3 1 4 1239

13 Functionally Uniform 1151 8 16 0 1127

14 Crossing mixed 1674 10 12 12 1640

15 Unidirectional Mixed 2363 23 134 4 2202

Identifications

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood 

ratio test, and LOGREG = logistic regression.  Bold font indicates an accurate detection and 

identification.  NA = Not Applicable, CSIBTEST can only classify DIF as uniform or nonuniform.
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Table 23. 

Confusion Matrix of Detections and Identifications by Procedure for 15-item Constant 

Implementation Conditions 

 

Procedure

Item 

number

DIF type item is 

known to exhibit

Total 

detections Uniform Nonuniform Mixed

No type 

indicated

CSIB

6 No DIF 999 738 261 NA NA

7 No DIF 1031 781 250 NA NA

8 No DIF 912 695 217 NA NA

9 No DIF 921 692 229 NA NA

10 No DIF 949 751 198 NA NA

11 Uniform 2390 2333 57 NA NA

12 Nonuniform 903 599 304 NA NA

13 Functionally Uniform 1855 1729 126 NA NA

14 Crossing mixed 1866 1770 96 NA NA

15 Unidirectional Mixed 2510 2455 55 NA NA

IRT-LR

6 No DIF 411 3 6 400 2

7 No DIF 453 19 13 415 6

8 No DIF 466 0 4 462 0

9 No DIF 223 0 0 223 0

10 No DIF 268 6 1 259 2

11 Uniform 1917 412 114 1346 45

12 Nonuniform 1488 36 18 1432 2

13 Functionally Uniform 982 0 13 969 0

14 Crossing mixed 1321 81 1 1239 0

15 Unidirectional Mixed 2234 612 16 1562 44

LOGREG

6 No DIF 466 35 23 5 403

7 No DIF 618 52 12 5 549

8 No DIF 78 30 2 0 46

9 No DIF 58 17 2 1 38

10 No DIF 222 20 48 2 152

11 Uniform 2193 119 674 169 1231

12 Nonuniform 1290 669 29 65 527

13 Functionally Uniform 1244 80 317 17 830

14 Crossing mixed 1962 349 393 33 1187

15 Unidirectional Mixed 2542 433 67 10 2032

Identifications

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood 

ratio test, and LOGREG = logistic regression.  Bold font indicates an accurate detection and 

identification. NA = Not Applicable, CSIBTEST can only classify DIF as uniform or nonuniform.
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Table 24. 

Confusion Matrix of Detections and Identifications by Procedure for 30-item, All-other Implementation Conditions 

 

Procedure

Item 

number

DIF type item is 

known to exhibit

Total 

detections Uniform Nonuniform Mixed

No type 

indicated

Item 

number

DIF type item is 

known to exhibit

Total 

detections Uniform Nonuniform Mixed

No type 

indicated

CSIB

6 No DIF 196 81 115 NA NA 21 No DIF 238 45 193 NA NA

7 No DIF 231 104 127 NA NA 22 No DIF 202 68 134 NA NA

8 No DIF 136 38 98 NA NA 23 No DIF 209 72 137 NA NA

9 No DIF 110 25 85 NA NA 24 No DIF 131 36 95 NA NA

10 No DIF 150 58 92 NA NA 25 No DIF 231 100 131 NA NA

11 Uniform 2104 1524 580 NA NA 26 Uniform 2195 2018 177 NA NA

12 Nonuniform 1212 8 1204 NA NA 27 Nonuniform 1346 9 1337 NA NA

13 Functionally Uniform 1127 570 557 NA NA 28 Functionally Uniform 1114 478 636 NA NA

14 Crossing mixed 1402 300 1102 NA NA 29 Crossing mixed 1438 63 1375 NA NA

15 Unidirectional Mixed 2259 1768 491 NA NA 30 Unidirectional Mixed 2264 1926 338 NA NA

IRT-LR

6 No DIF 2790 0 0 2790 0 21 No DIF 960 0 20 940 0

7 No DIF 609 0 0 609 0 22 No DIF 300 0 1 299 0

8 No DIF 219 0 0 219 0 23 No DIF 593 0 3 590 0

9 No DIF 279 7 0 271 1 24 No DIF 816 0 0 816 0

10 No DIF 2024 402 78 1514 30 25 No DIF 1975 0 0 1975 0

11 Uniform 1702 42 6 1653 1 26 Uniform 2852 0 0 2852 0

12 Nonuniform 1272 0 6 1266 0 27 Nonuniform 2738 0 0 2738 0

13 Functionally Uniform 1494 38 1 1455 0 28 Functionally Uniform 2504 0 2 2502 0

14 Crossing mixed 2336 586 23 1706 21 29 Crossing mixed 2251 0 84 2167 0

15 Unidirectional Mixed 498 10 1 487 0 30 Unidirectional Mixed 0 0 0 0 0

LOGREG

6 No DIF 100 8 12 34 46 21 No DIF 58 3 20 2 33

7 No DIF 144 6 49 3 86 22 No DIF 130 4 65 37 24

8 No DIF 57 4 1 5 47 23 No DIF 66 0 1 51 14

9 No DIF 34 2 1 1 30 24 No DIF 89 61 1 9 18

10 No DIF 48 1 0 2 45 25 No DIF 167 8 18 5 136

11 Uniform 2205 44 32 2 2127 26 Uniform 2282 18 1337 128 799

12 Nonuniform 1358 8 2 15 1333 27 Nonuniform 1483 500 1 737 245

13 Functionally Uniform 1125 16 34 0 1075 28 Functionally Uniform 1156 570 31 60 495

14 Crossing mixed 1624 11 8 21 1584 29 Crossing mixed 1691 94 805 23 769

15 Unidirectional Mixed 2334 29 97 7 2201 30 Unidirectional Mixed 2351 904 18 13 1416

Identifications Identifications

Note.  CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression.  Bold font indicates an accurate detection 

and identification.  NA = Not Applicable, CSIBTEST can only classify DIF as uniform or nonuniform.
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Table 25. 

Confusion Matrix of Detections and Identifications by Procedure for 30-item, Constant Implementation Conditions 

 

Procedure

Item 

number

DIF type item is 

known to exhibit

Total 

detections Uniform Nonuniform Mixed

No type 

indicated

Item 

number

DIF type item is 

known to exhibit

Total 

detections Uniform Nonuniform Mixed

No type 

indicated

CSIB

6 No DIF 179 60 119 NA NA 21 No DIF 198 90 108 NA NA

7 No DIF 211 71 140 NA NA 22 No DIF 218 69 149 NA NA

8 No DIF 171 46 125 NA NA 23 No DIF 189 75 114 NA NA

9 No DIF 181 62 119 NA NA 24 No DIF 178 45 133 NA NA

10 No DIF 178 61 117 NA NA 25 No DIF 194 57 137 NA NA

11 Uniform 2040 1769 271 NA NA 26 Uniform 2048 1974 74 NA NA

12 Nonuniform 741 32 709 NA NA 27 Nonuniform 741 27 714 NA NA

13 Functionally Uniform 1123 722 401 NA NA 28 Functionally Uniform 1131 626 505 NA NA

14 Crossing mixed 740 592 148 NA NA 29 Crossing mixed 537 279 258 NA NA

15 Unidirectional Mixed 2153 2025 128 NA NA 30 Unidirectional Mixed 1971 1937 34 NA NA

IRT-LR

6 No DIF 617 5 6 605 1 21 No DIF 266 0 4 262 0

7 No DIF 678 32 10 630 6 22 No DIF 942 0 26 916 0

8 No DIF 605 0 0 605 0 23 No DIF 265 0 2 263 0

9 No DIF 212 0 0 212 0 24 No DIF 576 0 2 574 0

10 No DIF 301 9 0 291 1 25 No DIF 886 2 19 865 0

11 Uniform 2121 607 65 1304 145 26 Uniform 2110 171 65 1852 22

12 Nonuniform 1715 37 8 1670 0 27 Nonuniform 1813 38 20 1755 0

13 Functionally Uniform 1281 0 4 1277 0 28 Functionally Uniform 1444 0 10 1434 0

14 Crossing mixed 1502 59 0 1443 0 29 Crossing mixed 1573 3 5 1565 0

15 Unidirectional Mixed 2379 638 8 1701 32 30 Unidirectional Mixed 2345 1 25 2319 0

LOGREG

6 No DIF 188 47 9 5 127 21 No DIF 196 21 21 7 147

7 No DIF 232 62 14 3 153 22 No DIF 213 78 2 5 128

8 No DIF 74 34 3 1 36 23 No DIF 188 26 11 1 150

9 No DIF 78 33 2 0 43 24 No DIF 125 31 12 7 75

10 No DIF 130 28 12 3 87 25 No DIF 227 68 36 11 112

11 Uniform 2019 119 554 270 1076 26 Uniform 2071 70 758 154 1089

12 Nonuniform 967 641 19 73 234 27 Nonuniform 1101 675 20 110 296

13 Functionally Uniform 1001 82 314 36 569 28 Functionally Uniform 1002 80 366 75 481

14 Crossing mixed 1654 337 249 110 958 29 Crossing mixed 1682 541 71 57 1013

15 Unidirectional Mixed 2433 379 29 4 2021 30 Unidirectional Mixed 2466 147 46 3 2270

Note. CSIBTEST = crossing simultaneous item bias test, IRT-LR = item response theory likelihood ratio test, and LOGREG = logistic regression.  Bold font indicates an accurate detection 

and identification.  NA = Not Applicable, CSIBTEST can only classify DIF as uniform or nonuniform.

Identifications Identifications
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CHAPTER 7 

Discussion 

The high stakes nature of testing in organizational settings has resulted in great 

concern over the potential for bias against a particular segment of the population (Sackett, 

Schmitt, Ellingson, & Kabin, 2001).  Among non-psychometricians, tests on which the 

majority group on average achieves higher scores than a minority group are seen as 

biased, and this standard has informed most assessment related legislation in the United 

States (McAllister, 1993).  However, mean test score differences between groups are not 

necessarily a symptom of biased tests; an important distinction must be made between 

impact - dissimilar performance due to a difference in the distribution of ability between 

the groups - and differential functioning, or the presence of performance differences for 

individuals of equal ability (Drasgow & Hulin, 1990; Shealy & Stout, 1993). 

A test item that exhibits differential functioning (or DIF) is one for which 

examinees of equal ability, but from different portions of the population, have an unequal 

probability of endorsement (Hambleton & Swaminathan, 1985; Hulin et al., 1983; Lord, 

1980).  A test in which the cumulative effects of DIF influence total score would be said 

to exhibit DTF (Raju et al., 1995).  Test developers and researchers are generally 

concerned with the detection of items that favor the majority or reference group within 

the population over a minority or focal group. 

The presence of differential functioning signals problems within a test that should 

be addressed.  Failure to do so can reduce the effectiveness of a selection system as 

factors other than those that an instrument was intended to assess may be affecting 
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observed scores (Ackerman, 1992; Hunter & Schmidt, 2000; Lord, 1980; Shealy & Stout, 

1993).  Furthermore, the use of assessments that exhibit substantial differential 

functioning favoring the reference group may create a situation in which selection rates 

violate the 4/5th rule used for determining the presence of adverse impact.  This means 

that failure to detect differential functioning and accordingly act could result in missed 

opportunities for qualified minority applicants and in possible litigation against the test-

user.  Given the serious consequences of differential functioning for both test-taker and -

user alike, the identification of procedures that can effectively detect DIF is important. 

This simulation’s objective was to examine the efficacy of three methods, 

CSIBTEST (Li & Stout, 1996), IRT-LR (Thissen et al., 1988), and LOGREG 

(Swaminathan & Rogers, 1990), to detect and classify various forms of DIF.  Moreover, 

each procedure was implemented using both an all-other and a constant approach to the 

trait estimate (i.e., all test items but the one under study are used to estimate trait standing 

or a pre-selected subset is used, respectively).  This was done to ascertain its effect upon 

the efficacy of the procedures and to ensure their comparability (typically, CSIBTEST 

and LOGREG utilize an all-other approach and for IRT-LR it is increasingly 

recommended that a constant approach be used).  Within this section, a summary of the 

simulation’s results are presented and related to past studies of these procedures.  

Additionally, the limitations of the present effort and ideas for future research are offered.  

Finally, the implications of the findings upon practice are discussed. 
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Summary of Type I Error Results 

Of the study procedures, it was found that LOGREG yielded the lowest average 

Type I error rate and that both CSIBTEST and IRT-LR demonstrated error rates that were 

greater the nominal .05 level.  These findings were unanticipated as past research on the 

DIF detection methods included in this study has generally found that they all exhibit 

Type I errors near .05.  For example, Li and Stout (1996) found that, when no DIF items 

were present, CSIBTEST demonstrated an overall error rate of .04 - a rate that was 

similar to the comparison procedures: SIBTEST and MH, two popular uniform DIF 

detection procedures.  Moreover, in a second study, they found that CSIBTEST exhibited 

a more controlled Type I error rate than LOGREG, though this finding was at odds with 

past research by Rogers and Swaminathan (1993) that found similar rates for the two 

procedures.  Additionally, many studies (e.g., Lopez Rivas et al., 2009; Stark et al., 2006) 

have found that IRT-LR produces well controlled error rates when a constant approach is 

used.  Although dissimilar to previous findings, the pattern of results in this study can be 

explained by its inclusion of conditions that were not present in preceding investigations. 

First, for CSIBTEST and LOGREG, how the matching subtest and trait estimate 

were constructed was manipulated.  When an all-other approach was used, both 

CSIBTEST and LOGREG generally exhibited controlled Type I error rates; this finding 

accords with past studies (e.g., Finch & French, 2007).  However, when a constant 

implementation was used, error rates for CSIBTEST in the 15-item test length condition 

increased markedly.  Thus it appears that for shorter tests the constant approach to 

CSIBTEST may not be advisable because, as shown here, a 5-item anchor appears to be 

insufficient, but for longer tests it could be a viable alternative if enough anchor items can 
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be identified.  For LOGREG, inflated error rates were found for the constant conditions 

when impact was present.  This renders suspect its ability to reliably discern bias from 

differences in group ability, and therefore draws into question this implementation’s 

usefulness.  Additionally, constant LOGREG was also found to exhibit higher error in the 

short test length conditions, which again suggests that more anchor items may be needed 

for the constant implementation to be effective. 

A second consideration is the inclusion of a DTF manipulation in the study.  

Namely, in the DTF conditions, where DIF items were designed to benefit only the 

reference group, CSIBEST demonstrated greater Type I error rates than LOGREG; an 

effect that again differed according to implementation.  For CSIBTEST, when a constant 

implementation was used, error rates across DTF conditions were comparable but, in the 

all-other conditions, the DTF conditions had higher error rates and worsened as DIF 

magnitude increased.  This confirmed that CSIBTEST is sensitive to the presence of 

contamination within the trait estimate.  On the other hand, the LOGREG conditions 

showed no difference due to DTF. 

Lastly, Type I error results for IRT-LR were unexpectedly high, especially for the 

all-other implementation where rates reached 1.0 in some conditions.  The constant 

implementation yielded better results; nevertheless, even these rates were above .05 and 

generally greater than what was observed for the other study procedures under analogous 

conditions.  This trend is consistent with past work, that is, that the constant approach 

yields lower error rates than the all-other (e.g., Stark et al., 2006); however, the 

magnitude of the error rates found in this study were greater than what is typically seen 

for either implementation.  A possible explanation is that this study used a 3-PL model 
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and, as the c-parameter is not usually investigated for DIF, this parameter was not 

constrained in the comparison models.  It is conceivable that constraining this parameter 

would have generated results consistent with past simulations (e.g., Lopez Rivas et al., 

2009).  Such a method to building comparison models, in which all item parameters are 

constrained, is recommended in the literature (Thissen, 2001; Stark, 2006); however, for 

this study, it would have abrogated the ability to investigate the accuracy of DIF 

classifications as defined in Table 5. 

Summary of Power Results 

This simulation investigated the capacity of the procedures to detect the five DIF 

prototypes illustrated in Figure 4, thus, providing a wide-ranging assessment of the power 

of these procedures that complements the available literature.  For example, there was 

previously little information available on the ability of IRT-LR to detect nonuniform DIF 

and, when extant, it utilized a constant implementation (e.g., Finch & French, 2007).  

Also, past studies of CSIBTEST and LOGREG did not explore their efficacy to detect 

crossing mixed DIF or functionally uniform DIF (e.g., Hildago & López-Pina, 2004; 

Narayanan & Swaminathan, 1996; Rogers & Swaminathan, 1993).  Relatedly, the ability 

of CSIBTEST to detect uniform DIF has not been well investigated. 

Consistent with past research and study hypotheses, it was found that the power of 

the procedures increased with larger sample size and greater DIF magnitude.  

Furthermore, as seen in past research (e.g., Wang & Yeh, 2003), it was found that the 

constant conditions demonstrated better power when DIF was designed such that only 

one group benefitted from it (i.e., conditions where DTF was present).  At odds with 

expectations and concerns over the presence of contamination in the matching subtest, it 
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was found that - even when DTF was present - the all-other implementation of the 

CSIBTEST and LOGREG provided better results than the constant.  When coupled with 

the findings of better Type I error rates, it is clear that the nonparametric procedures are 

more effective with an all-other approach. 

Of the study procedures, it was found that LOGREG yielded the highest overall 

power.  Additionally, its power was not significantly affected by the presence of impact.  

Likewise, it performed similarly across test length conditions, which was unexpected as 

longer tests provide more information for ability estimation, and this could have been 

expected to improve its reliability and accuracy.  In relation to its efficacy to detect the 

DIF types relative to each other, power was greatest for items in which difficulty differed 

and IRFs did not cross (uniform and unidirectional mixed DIF).  Whenever DIF involved 

only differences in item discrimination, performance worsened (nonuniform and 

functionally uniform DIF), which confirmed expectations.  Crossing mixed DIF, in which 

IRFs crossed and both the a- and b-parameters were shifted, was detected better than 

aforementioned item types. 

The all-other implementation of LOGREG consistently demonstrated excellent 

power and controlled Type I error rates.  Additionally, it outperformed the constant 

approach and both implementations of CSIBTEST and IRT-LR.  Its power to detect 

uniform and unidirectional mixed DIF was significantly greater than that for nonuniform, 

crossing mixed, and functionally uniform DIF.  Furthermore, its effectiveness for 

detecting crossing mixed DIF was significantly greater than its ability to detect 

nonuniform and functionally uniform DIF.  Although similar power was achieved by the 

constant implementation of LOGREG, its average Type I error rate exceeded .05 due to 
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its poor performance in the impact conditions.  This implementation exhibited a similar 

pattern for detection of the DIF prototypes: uniform and unidirectional mixed DIF had 

the greatest rate of detection, followed by nonuniform, crossing mixed, and functionally 

uniform. 

CSIBTEST demonstrated the lowest overall power.  Contrary to expectation, it 

showed significantly better power for the detection of uniform and unidirectional mixed 

DIF than nonuniform, crossing mixed, and functionally uniform DIF.  Also, its ability to 

detect crossing mixed and functionally uniform DIF was significantly better than its 

ability to detect nonuniform DIF.  This pattern of results was surprising because 

CSIBTEST was specifically created to detect DIF in which IRFs cross.  For the all-other 

implementation, unidirectional mixed DIF was most frequently detected followed by 

uniform.  The remaining DIF types: nonuniform, crossing mixed, and functionally 

uniform, were flagged at a comparable rate.  For the constant implementation, power was 

greatest for items in which location was shifted and a crossing point was not present 

(uniform and unidirectional mixed DIF).  Among the other DIF prototypes, it was found 

that functionally uniform DIF was detected at a better rate than crossing mixed and 

nonuniform DIF. 

Despite its elevated Type I error rate, it was found that IRT-LR produced overall 

power comparable to that of LOGREG.  In terms of its ability to detect the various DIF 

types, no significant differences were found between them.  In regard to implementation, 

the constant IRT-LR proved to have power akin to other the procedures but exhibited an 

inflated Type I error rate.  For the DIF prototypes, it was found that unidirectional mixed 

generated the most hits, and similar rates were observed for uniform, nonuniform, and 
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crossing mixed DIF.  Functionally uniform DIF showed the lowest power.  The all-other 

implementation produced Type I errors rates that well exceeded the nominal level.  It was 

also found that these rates were substantially worse in the short test conditions.  For both 

implementations, the greatest error rates were observed in the large sample size and long 

test length conditions; this again suggests the need for p-values smaller than .05 when 

this procedure is used. 

In terms of the procedures’ effectiveness for detecting the DIF prototypes relative 

to one another, it was found for uniform DIF that LOGREG generated the greatest 

number of hits followed by CSIBTEST and then constant IRT-LR.  For LOGREG, the 

all-other approach performed best, achieving near perfect detection in the small DIF 

conditions when groups were of equal ability and DIF items favored both groups.  Power 

for the all-other conditions was lower when impact was present; the influence of impact 

upon the constant conditions was confounded by an inflated Type I error rate.  The 

consequences of the impact and DTF manipulations upon CSIBTEST differed by 

implementation.  For the constant implementation, neither the inclusion of impact nor 

DTF had a negative effect but, for the all-other conditions, both reduced power.  

Additionally, for the latter, augmented test length improved detection.  For constant IRT-

LR, none of the manipulations had a substantial effect upon observed uniform DIF 

detection. 

Nonuniform power results indicated that LOGREG generated more hits than 

CSIBTEST.  This does not agree with the findings of Naranyanan and Swaminathan 

(1996) and Finch and French (2007) though this is again attributable to the inclusion of 

different approaches to the trait estimates.  That is, the nonuniform DIF detection rate for 
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the constant LOGREG conditions was substantially greater than that of the constant 

CSIBTEST conditions.  Similarly, no advantage was gained for LOGREG by extending 

test length, which again counters past findings (e.g., Swaminathan & Rogers, 1990) but 

this is due to the decline in power observed in the 30-item, constant conditions.  This 

suggests that in longer tests more anchor items are needed to effectively detect 

nonuniform DIF when a constant approach to LOGREG is used.  Contrary to findings for 

uniform DIF, the impact and DTF were found to have no effect upon the nonparametric 

procedures for the detection of nonuniform DIF.  The constant implementation of IRT-

LR detected nonuniform DIF as well as the all-other implementations of the 

nonparametric procedures, but also exhibited a greater Type I error rate. 

For unidirectional mixed DIF, the all-other implementation of LOGREG again 

generated the most hits and provided near perfect detection in many conditions.  The 

impact, DTF, and test length manipulations had no real effect upon observed 

performance.  Results for the constant conditions were comparable, with no relationships 

appearing between observed hits and the impact, DTF, and test length manipulations.  For 

CSIBTEST, the all-other conditions provided better detection than the constant 

conditions.  None of the manipulations were found to exert significant influence.  As was 

found for the other procedures, IRT-LR was also not adversely affected by the 

manipulations.  Additionally, it was found that its implementations had similar power in 

spite of the highly elevate Type I error rates seen in the all-other conditions. 

For power to detect crossing mixed DIF, it was again found that LOGREG 

outperformed the other procedures.  Both implementations of LOGREG demonstrated 

similar power though it was found that the constant conditions benefit from the 
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introduction of DTF.  Both CSIBTEST implementations were comparably effective and 

the all-other produced better results in the absence of DTF.  Again, it was found that the 

performance of IRT-LR was not tied to any of the study manipulations other than sample 

size and DIF magnitude.  Interestingly, the procedures demonstrated lower detection of 

crossing mixed DIF than unidirectional mixed, which parallels findings for uniform and 

nonuniform DIF.  This shows that the procedures are less effective when group IRFs 

cross near the middle of the ability range, as opposed to simply when differences in a-

parameters are present. 

The detection of functional uniform DIF did not vary substantially across 

procedures or due to the study manipulations (besides samples size and DIF magnitude).  

Additionally, it did not have the lowest associated power relative to the other DIF 

prototypes, which ran counter to expectations.  IRT-LR exhibited the greatest sensitivity 

but also demonstrated an inflated Type I error rate; the power for the constant conditions 

was generally comparable to the other procedures.  For CSIBTEST, both 

implementations were comparable when observed differences in Type I error rate are 

considered.  The LOGREG implementations also generated similar results with no 

differences arising due to impact, DTF, or test length. 

Summary of Type III Error and Classification Accuracy Results 

 Many procedures have been developed that are capable of detecting more than 

one DIF type; however, the issue of classification accuracy was only recently broached in 

the literature by Finch and French (2008).  In their study, the rate at which a procedure 

detected the DIF type that was not present was examined.  In other words, the frequency 

with which when testing for uniform DIF, nonuniform DIF items were detected and vice 
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versa; these were described as anomalous Type I errors.  Their results indicated that 

CSIBTEST exhibited the greatest rate of anomalous Type I errors when uniform DIF was 

present, followed by LOGREG, and the constrained baseline IRT-LR.  When nonuniform 

DIF was present, it was found that LOGREG exhibited a slightly higher rate than 

constrained baseline IRT-LR; CSIBTEST was not included in this condition. 

This simulation extended this line of research by comparing the actual DIF 

classification assigned to an item by a procedure against the DIF type that is known to be 

present.  This means that, for a detection of DIF to be considered a correct identification, 

it must be flagged as a DIF item and assigned the correct DIF type based on the criteria 

laid out in Table 5.  The frequency with which DIF was found but misclassified was 

presented as the procedure’s Type III error rate (Mosteller, 1948).  It was anticipated that 

Type III error would be influenced by the same variables that affect power.  Consistent 

with this expectation, it was found that increased sample size and the absence of impact 

reduced error rates for all procedures.  Additionally, performance improved in the longer 

test conditions for the nonparametric procedures.  Surprisingly, DIF magnitude did not 

affect observed error rates. 

It was found that CSIBTEST generated the lowest Type III error rate, which 

supports the proposition made by Li and Stout (1996) that the kc value can be used to 

classify DIF.  For implementation, it was found that the all-other conditions outperformed 

the constant.  Additionally, using a longer test improved performance.  As evidenced by 

the confusion matrices, the all-other approach provided near perfect identification of 

nonuniform DIF.  The remaining DIF types were accurately identified at a good rate 

except for functionally uniform.  For false positives, it was found that they were usually 
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classified as nonuniform.  Results for the constant implementation differed.  Namely, 

near perfect detection was found for uniform and unidirectional mixed DIF.  Nonuniform 

and functionally uniform were correctly identified at a good rate, and crossing mixed 

identification was poor.  False positives also tended to be identified as nonuniform in 

these conditions. 

IRT-LR demonstrated a substantially greater Type III error rate than CSIBTEST.  

This was not found to vary across implementations.  In terms of classification accuracy, 

IRT-LR tended to classify detections (including false positives) as mixed DIF.  For the 

all-other approach, classification accuracy was low for uniform, nonuniform, and 

functionally uniform DIF.  Results for mixed DIF are questionable due to the procedure’s 

strong tendency to label items as mixed.  This same pattern of findings was observed in 

the constant conditions.  In fact, 72% of the total detections (hits and false positives) 

generated by IRT-LR were labeled as mixed; this indicates that both 1 df follow up tests 

were found to be significant a majority of the time; this again suggests that the procedure 

would benefit from the use of a smaller p-value. 

LOGREG exhibited highly elevated Type III error rates, with a slight 

improvement in the constant conditions.  Likewise, its percentage of correct 

identifications was poor as its detections tended to not be identified as any particular DIF 

type, including true positives.  This indicates that, although the addition of the group 

membership and group x trait estimate interaction terms produced a significant change in 

model fit, the individual terms rarely reached statistical significance in the follow up 

tests.  This suggests that, contrary to what is often stated in the literature, the ability and 

interaction terms in the LOGREG model do not indicate the type of DIF detected.  For 
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the all-other conditions, the percentage of correct identifications was near zero across 

DIF prototypes.  The constant conditions yielded better results for the identification of 

functionally uniform DIF but the other DIF prototypes were again near zero. 

Study Limitations and Future Research 

Though many factors were investigated in this study, there are many 

considerations that warrant additional scrutiny.  Namely, data were generated exclusively 

with a 3-PL model, which has many implications.  First, this limits the applicability of 

results to dichotomous items.  Second, and more importantly, is the c-parameter.  For 

IRT-LR, the use of a 3-PLM introduced an additional parameter that could have been 

constrained during model construction.  As previously mentioned, in the comparison 

models the lower asymptote was not fixed and it appears that this lead to the inflated 

Type I error findings for this procedure.  Subsequent research should account for this by 

adopting the omnibus approach suggested by Stark et al. (2006) or using the IRTLRDIF 

program (Thissen, 2001), which implements a sequential approach to the analysis that 

conditions on the c-parameter before testing the equivalence of the a-parameter and 

conditions on both the c- and a-parameters before testing the b-parameter (again, in this 

study, MULTILOG was used so direct tests of parameters could be conducted as shown 

in Table 5). 

The c-parameter also potentially influenced the findings for LOGREG.  

Specifically, unlike IRT-LR and CSIBTEST, LOGREG does not account for guessing.  

Furthermore, past findings have not shown a consistent effect attributable to the use of a 

3-PLM, which should worsen performance because the assumption of a linear 

relationship between the logit and predictor is violated (Rogers & Swaminathan, 1993).  
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One possible reason is that the influence of the c-parameter may vary as a function of 

many variables - some of which were manipulated in this study.  For example, if DTF 

against the focal was present, resulting in a test difficulty of 0.5 and the center of this 

group’s ability distribution was centered at -0.5, a large proportion of the sample will 

exhibit test scores that fall in the region of the ability distribution that corresponds to the 

lower asymptote; this harms the reliability of the trait estimate and results in poor model-

data fit.  Conversely, for the reference group, if the TCC were centered at 0.0 and group 

ability was (0, 1), the majority of the sample would fall in the range of ability that is not 

impacted by the c-parameter, thus model-data fit should be acceptable. 

As can be seen from this example, for 3-PLM, it is difficult to determine the 

unique influence of differential functioning, impact, and model-data fit as, by definition, 

DIF and impact require manipulations that will determine the influence of the c-

parameter and thus fit.  This may account for the inconsistency of past research regarding 

the effects of 3-PLM upon LOGREG.  Future research should attempt to isolate the 

unique influence of model-data fit by manipulating the magnitude of the c-parameter 

(e.g., 0.0 for good fit, 0.2 for misfit, and 0.4 for severe misfit) as well as different levels 

of impact and DTF.  Also, the introduction of contamination into the constant anchor set 

that is equal to the total DTF in the test would help clarify the findings related to 

implementation. 

A second limitation of the study relates to the number of levels in the sample 

manipulation.  Namely, sample sizes were equal across groups in all conditions.  This 

could be varied to determine its effect upon the efficacy of the procedures as, in most 

instances where DIF is being investigated, the available sample for the focal group is 
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likely smaller than that of the reference.  Also, the largest sample size included in the 

study was 1,000 per group.  It is possible that for IRT-LR the inclusion of large sample 

size conditions (e.g., 3,000 or more) could have occasioned better outcomes as parameter 

estimates would be more accurate, especially given the use of the 3-PLM in this study. 

Alpha level is another  variable that influenced the observed results.  In this study 

a p-value of .05 was used in all conditions, it is possible that the addition of a condition in 

which a smaller or corrected alpha level was employed would have assisted to control the 

Type I error rate observed in the IRT-LR conditions.  On the other hand, this would likely 

have decreased the power of CSIBTEST and LOGREG, both of which exhibited 

generally good Type I error rates with the all-other approach even at a .05 alpha level. 

Another avenue for future analysis is to examine the effects of the anchor items 

used to estimate trait level upon the effectiveness of the constant approach.  That is, 

research (e.g., Lopez et al., 2009) has found that the number of items in the anchor set 

affected the efficacy of IRT-LR when a constant approach was employed, such could be 

the case for CSIBTEST and LOGREG.  In this study, it was found that the constant 

implementation yielded worse results than the all-other for these procedures; however, 

whether this was due to the number of items in the anchor set versus test length cannot be 

determined because these were nested factors (anchor set was 5 in 15-item test and 10 in 

30-item test).  Succeeding simulations may wish to fully crossing these variables to 

investigate their effects (e.g., anchor set of 5 in 15- and 30-item tests and anchor of 10 in 

15- and 30-item tests). 

Finally, the effect of DIF direction upon the efficacy of the constant 

implementation should be further investigated.  As stated before, to minimize DTF in this 
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study, the direction of DIF was changed such that three items favored the reference group 

(uniform, nonuniform, and crossing mixed) and two favored the focal group 

(unidirectional mixed and functionally uniform; see Appendix B for more details).  Wang 

and Yeh (2003) found that the power of constant IRT-LR was improved when DIF 

favored only one group.  This study found this same result but across all of the study 

procedures.  Future simulations could better evaluate this finding by including conditions 

in which the type of DIF present is constant and only direction is varied (e.g., test 

includes only one-sided, uniform DIF).  Also, the number of items that favor each group 

could be varied. 

Conclusions and Recommendations 

It was found that LOGREG, when implemented using an all-other approach, 

provided the best detection while maintaining controlled Type I error rates.  Moreover, it 

had one of the highest detection rates for three of the five studied DIF prototypes: 

uniform, unidirectional mixed, and crossing mixed.  This conclusion was surprising for 

two reasons.  First, CSIBTEST was specifically designed to detect DIF in which IRFs 

cross, yet it consistently detected items with a-parameter shifts at a lower rate than items 

with b-parameter shifts, and both at a lower rate than LOGREG.  Second, the use of the 

3-PLM, could have reduced the observed power of LOGREG; thus it is plausible that had 

a 2-PLM been used the advantage of LOGREG over the other study procedures would 

have been even greater. 

This finding is favorable news for practitioners.  LOGREG is a commonly known 

analysis that provides a flexible, model-based approach to DIF detection that is easily 

conducted via widely used statistical software such as SPSS.  Additionally, it requires 
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smaller sample sizes than procedures that estimate IRT parameters and demonstrated 

excellent power in 15-item tests.  Findings also suggest that its performance is not 

harmed by contamination within the ability estimate; this means that purification is not a 

necessary step, further easing the procedure’s implementation. 

In relation to the DIF prototypes, it was found that the three procedures regardless 

of implementation detected uniform DIF at a greater rate than nonuniform.  Additionally, 

the procedures achieved excellent unidirectional mixed DIF detection but not crossing 

mixed DIF.  Also, contrary to expectation, it was not found that functionally uniform DIF 

had a significantly lower rate of detection than the other DIF types; only for LOGREG 

was it detected at the lowest rate.  These findings are notable because, across all of the 

prototypes, the magnitude of DIF was the same and, in the case of mixed DIF, involved 

shifts of both the a- and b-parameters; therefore, it seems that the presence of a point at 

which the IRFs cross is the cause of the observed performance difference (as opposed to 

differences in the a-parameter). 

The Type III error results show that the study procedures could not reliably 

identify the type of DIF detected.  Specifically, all procedures exhibited Type III error 

rates greater than .05; CSIBTEST had the lowest overall rate at .24.  This inability to 

properly classify the type of DIF detected may be problematic in contexts where that 

information is used for some end (e.g., the translation of a validated instrument into 

another language, Ellis, 1989).  However, in the context of high-stake testing, where the 

objective is to identify and remove items that could affect group pass rates, this limitation 

may not be a concern. 
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Consider the scenario that an organization uses an assessment as an initial hurdle 

in a selection system.  In this system, applicants who score below the cutoff point do not 

proceed to the next step and - for applicants who score above the cutoff point - scores are 

used for rank ordering with the highest scoring candidates moving forward (i.e., top-

down selection).  Under such a scenario, if a measure were to exhibit sufficient 

nonuniform DIF against one group that it accumulated to produce DTF, the group for 

which the test’s discrimination - or a-parameter - was lower would be at a disadvantage.  

Such a situation is illustrated in Figure 10, it shows the TCCs for two groups and a 

hypothetical assessment’s cut score represented by a vertical line that coincides with a 

trait standing of 0.0. 

As can be seen, in this scenario, if one were to calculate the signed area across the 

entire ability range, neither group would have an advantage.  However, in actuality, given 

that scores below the cut score are treated the same (i.e., these candidates do not move 

forward), only the group for whom the advantage occurs above the cut score receives any 

benefit.  Therefore, the presence of nonuniform DIF results in the same outcome as if the 

test had uniformly favored one group across the entire ability range, such a scenario 

supports Rogers and Swaminathan’s (1993) assertion that DIF analysis should focus on 

the detection of all forms of differential item functioning and not solely only on group 

differences in observed difficulty. 
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Figure 10. Two Test Characteristic Curves (TCCs) for hypothetical tests exhibiting 

nonuniform Differential Test Functioning (DTF) and a cut score that corresponds to a 

trait level of 0.0. 

 

In selection contexts, it seems that the use of procedures that are sensitive to all 

forms of DIF is important, whereas the ability to accurately identify the type of DIF is of 

lesser importance as all forms have the potential to produce undesirable outcomes.  

Additionally, as was shown, factors that are not captured in a statistical test for 

differential functioning - such as the effect of cutoff scores and how test scores are used 

(e.g., top-down selection, banding, etc.), can result in a one-sided advantage for one 

group - even when TCCs cross. 

With this in mind, future studies should look beyond hypothesis testing.  That is, 

the literature has consistently shown that many DIF detection procedures are sensitive to 

small differences in item parameters that have no practical effect.  This suggests that 

research should begin to investigate other considerations that could advise conclusions 

regarding the presence and nature of differential functioning.  For example, effect size 

measures that translate test score differences directly into the outcome of interest, such as 

the one outlined by Stark et al. (2004), should be more widely used by researchers and 

practitioners to ascertain the consequences of observed differential functioning.  The use 
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of such tools would help foster greater understanding of how differences in test 

functioning actually affect examinee outcomes.  Furthermore, as suggested by Finch and 

French (2008), graphical representations such as the TCCs presented in Figure 10 could 

be used to identify the nature of differential functioning when it is detected.  Such 

representations could depict considerations related to context, such as cutoff scores, 

which would promote awareness of how policies and testing practices also affect 

examinee outcomes. 
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Appendix A: Glossary of Acronyms and Important Study Terms 

 

ANOVA - analysis of variance. 

CFA - confirmatory factor analysis. 

Crossing DIF - DIF that results in neither group being favored consistently across the  

trait range. 

CSIBTEST - crossing simultaneous item bias test. 

df - degrees of freedom. 

DIF - differential item functioning - when examinees from different groups have unequal  

 item scores after conditioning on the primary trait a test is designed to measure. 

DTF - differential test functioning - when examinees from different groups have unequal  

 test scores after conditioning on the primary trait a test is designed to measure. 

Functionally uniform DIF - nonuniform DIF that has the effect of unidirectional DIF due  

 to the high trait level at which the group IRFs cross. 

Impact - a difference in the trait distributions of two groups after the scores have been  

 placed on a common metric. 

IRF - item response function. 

IRT - item response theory. 

IRT-LR - item response theory likelihood ratio test. 

LOGREG - logistic regression. 

MH - Mantel-Haenszel. 

Mixed DIF - DIF that results from group differences in both item discrimination and item 

 difficulty, can result in either crossing or unidirectional DIF. 

MML - marginal maximum likelihood estimation. 
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Nonuniform DIF - crossing DIF that results from group differences in item  

 discrimination. 

Power - the frequency with which DIF is identified in an item known to exhibit DIF. 

SIBTEST - simultaneous item bias test. 

TCC - test characteristic curve. 

Type I error - the frequency with which DIF is identified in an item known to not exhibit 

DIF. 

Type III error - the frequency with which the wrong DIF type is identified in an item  

 known to exhibit DIF. 

Unidirectional DIF - DIF that results in one group being favored consistently across the  

trait range. 

Uniform DIF - unidirectional DIF that results from group differences in item difficulty. 
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Appendix B: Selecting DIF Item Types to Reduce DTF 

In order to minimize DTF in this study, it was decided to design DIF items such 

that they do not all benefit the reference group.  In addition, it was deemed necessary that 

any changes made to the DIF items in order to minimize DTF be the same across test 

length conditions in order to avoid introducing confounds related to test length and DIF 

item modifications.  Thus, it was decided to alter individual DIF items (which are nested 

within the tests in groups of five) based on the extent to which they favored one group 

over another; to determine this, the signed area equation developed by Raju (1988) was 

used. 

Unlike the unsigned area equation, the signed area equation: (1 - c)(bf - br), takes 

into account the fact that crossing DIF essentially “cancels”, and provides an estimate of 

the area between the IRFs that is not negated by changes in group advantage across the 

trait continuum.  Therefore, the resulting value provides an index of the degree to which 

an item exclusively favors one group. 

Given the DIF prototypes to be included in this study, only the uniform, crossing 

mixed, and unidirectional mixed DIF items actually possessed a non-zero signed area 

value (Table B1).  As can be seen, changing the advantage provided by any two of these 

items would have resulted in a total signed area for the DIF items that, in sum, favored 

the focal group; thus, it was decided to focus on the possible effects of altering either the 

uniform or unidirectional mixed DIF items, which had equal signed area values.  In 

addition, although it possesses a zero signed area, the functionally uniform DIF item, 

given its unusual nature, could be considered to produce unidirectional DIF and was also 

investigated as a possible candidate for change.  Therefore, the DTF generated by 
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changing either the uniform or unidirectional DIF item types to favor the focal group, 

with and without altering the functionally uniform DIF item type as well, was 

investigated using the computer program DFITD4 (Raju, 1995). 

 

Table B1. 

Signed Area Values for Study DIF Items by DIF Magnitude Conditions 

 

 

Table B2 summaries the results of the DTF analyses.  It was found that, generally, 

the least DTF was generated when the unidirectional mixed and functionally uniform DIF 

item types favored the focal group and the remaining DIF item types favored the 

reference group.  Hence, the unidirectional mixed and functionally uniform DIF item 

types were designed to favor the focal group in the minimal DTF conditions. 

  

Item DIF type .4 DIF .8 DIF Item DIF type .4 DIF .8 DIF

11 Uniform .4 .8 26 Uniform .4 .8

12 Nonuniform .0 .0 27 Nonuniform .0 .0

13 Functionally uniform .0 .0 28 Functionally uniform .0 .0

14 Crossing mixed .2 .4 29 Crossing mixed .2 .4

15 Unidirectional mixed .4 .8 30 Unidirectional mixed .4 .8
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Table B2. 

Results of DTF Analyses by Test Length and DIF Magnitude 

 

 

DIF item type(s) that favor focal group Test length DIF magnitude DTF statistic

Unidirectional 15 .4 .02

15 .8 .09

30 .4 .15

30 .8 .25

Unidirectional and functionally uniform 15 .4 .02

15 .8 .04

30 .4 .03

30 .8 .28

Uniform 15 .4 .00

15 .8 .13

30 .4 .02

30 .8 .45

Uniform and functionally uniform 15 .4 .01

15 .8 .05

30 .4 .07

30 .8 .46
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